Project Development and Environment Study S.R. 31

From S.R. 80 (Palm Beach Blvd) to S.R. 78 (Bayshore Rd.)

Project Traffic Analysis Report Addendum

Financial Project ID: 441942-1-22-01
ETDM No.: 14359
Lee County, Florida
The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by FDOT pursuant to 23 U.S.C. § 327 and a Memorandum of Understanding dated December 14, 2016 and executed by FHWA and FDOT.

Prepared for the

Florida Department of Transportation District One

FDOT Project Manager:
Patrick Bateman, PE.
Florida Department of Transportation
District One
801 N. Broadway Avenue
Bartow, Florida 33830
November 2022 (Revision 1: December 2022, Revision 2: March 2023)
Table of Contents Page
1 EXECUTIVE SUMMARY 4
1.1 SR 31 at SR 80 Intersection 4
1.2 Directional Median Openings 4
1.3 SR 31 at Marina and Restaurant Entrance Intersection 5
2 TRAFFIC ANALYSIS ASSUMPTIONS 6
3 INTRODUCTION 7
3.1 Description of the Project. 7
3.2 Objective 7
3.3 Methodology 7
3.4 Transportation Plan Consistency 7
4 TRAFFIC ANALYSIS METHOD 8
5 EXISTING CONDITIONS 9
5.1 Existing Roadway Characteristics 9
5.2 Multi-Modal Facilities 9
5.3 Traffic Data Collection. 9
5.4 Existing Design Traffic Characteristics 9
5.4.1 K Factor 9
5.4.2 D Factor 9
5.4.3 T_{24} Factor 9
5.5 Existing Year (2019) LOS Analysis 9
5.5.1 Existing Roadway LOS Analysis 9
5.5.2 Existing Year HCM Capacity Analysis 9
5.5.3 Existing Intersection Analysis - Synchro 9
5.6 Safety Evaluation 10
5.6.1 Historic Crash Summary 10
5.6.2 Intersection and Location Specific Crashes 10
5.6.3 Segment Crash Safety Ratio 14
5.6.4 Highway Safety Manual (HSM) - Predictive Crash Analysis 14
6 DEVELOPMENT OF FUTURE YEAR TRAFFIC FORECASTS 16
6.1 Description of Alternatives. 16
6.1.1 No-Build Alternative. 16
6.1.2 Build Alternatives 16
6.2 AADTs and DHVs 17
6.3 Lane Geometry 17
7 ALTERNATIVES ANALYSIS 28
7.1 Future Year Roadway Analysis 28
7.1.1 No-Build Alternative HCM Capacity Analysis 28
7.1.2 Build Alternative HCM Capacity Analysis 28
7.2 Future Year Intersection Analysis 28
7.2.1 Warrants Analysis - SR 31 at Marina and Restaurant Entrance Intersection 29
7.2.2 No-Build Alternative Intersection Analysis 29
7.2.3 Build Alternative Intersection Analysis 30
8 SUMMARY OF ANALYSIS RESULTS 33
8.1 SR 31 at SR 80 Intersection 33
8.2 Directional Median Openings 33
8.3 SR 31 at Marina and Restaurant Entrance Intersection 33
9 APPENDICES 34
List of Figures Page
Figure 5-1: SR 31 Segment Crash History 11
Figure 5-2: SR 31 Segment Crash Summary (2017-2021) 11
Figure 5-3: Location and Type of Crashes 12
Figure 5-4: Location and Severity of Crashes 13
Figure 6-1: No-Build and Build Configuration Schematics 18
Figure 6-2: Annual Average Daily Traffic (AADT) Volumes 19
Figure 6-3: No-Build - Opening Year (2025) Design Hour Volumes 20
Figure 6-4: No-Build - Design Year (2045) Design Hour Volumes 21
Figure 6-5: Build (Option 1) - Opening Year (2025) Design Hour Volumes 22
Figure 6-6: Build (Option 1) - Design Year (2045) Design Hour Volumes 23
Figure 6-7: Build (Option 2) - Opening Year (2025) Design Hour Volumes 24
Figure 6-8: Build (Option 2) - Design Year (2045) Design Hour Volumes 25
Figure 6-9: Build Alternative (Option 1) - Lane Geometry 26
Figure 6-10: Build Alternative (Option 2) - Lane Geometry 27
List of Tables
Page
Table 5-1: Segment Crash Safety Ratio 14
Table 7-1: Warrants Analysis - SR 31 at Marina and Restaurant Entrance 29
Table 7-2: Build (Option 1) - Opening Year (2025) Intersection Delay/LOS 31
Table 7-3: Build (Option 1) - Design Year (2045) Intersection Delay/LOS 31
Table 7-4: Build (Option 2) - Opening Year (2025) Intersection Delay/LOS 32
Table 7-5: Build (Option 2) - Design Year (2045) Intersection Delay/LOS 32

Appendices

Appendix A - Lee County Average Crash Rates Table
Appendix B - HSM Predictive Crash Analysis
Appendix C - Preliminary Synchro Analysis: SR 31 at Marina and Restaurant Entrance
Appendix D - Warrants Analysis: SR 31 at Marina and Restaurant Entrance
Appendix E - Build Synchro Outputs

Section 1.0
 EXECUTIVE SUMMARY

This is an addendum to the Project Traffic Analysis Report (PTAR) which was submitted in April 2020. This addendum was prepared to document the following:

- The change of project analysis years to Opening Year (2025) and Design Year (2045) to be consistent with the "SR 31 PD\&E Study from SR 78 to Cook Brown Road", which is to the immediate north of this study. The PTAR submitted in April 2020 shows Opening Year (2026) and Design Year (2046).
- Revised safety evaluation of SR 31 study corridor (segment only) for a five-year period of 2017-2021.
- Revisions to Annual Average Daily Traffic (AADT) and Design Hour Volumes (DHVs) along the study corridor as a result of the proposed SR 31 realignment to the east and the proposed access modifications.
- Traffic evaluation of the directional median openings located at NW Development Driveway N/RaceTrac Driveway N \& LJ's Lounge Driveway and the traffic evaluation of the proposed full median opening at Marina \& Restaurant Entrance. This full median opening was developed because of the proposed realignment of SR 31 study corridor to the east.

Screening of intersection alternatives for the SR 31 at SR 80 signalized intersection were performed utilizing FDOT's Intersection Control Evaluation (ICE) process and documented separately. Please refer to the "ICE Technical Analysis Memorandum - Traffic and Safety Analysis at SR 80 and SR 31, Lee County, FL, August 2022" for the intersection control strategies that were identified and evaluated as part of this PD\&E Study.

Based on the future year analysis results, the SR 31 study corridor in the No-Build condition is not expected to operate at acceptable LOS condition (LOS D) or better, under both Opening Year (2025) and Design Year (2045) conditions. In the Build condition, the proposed widening of SR 31 to a six-lane facility is expected to improve traffic operations within the study area.

1.1 SR 31 at SR 80 Intersection

Please refer to the ICE Memorandum prepared for this intersection as part of this study.

1.2 Directional Median Openings

Further, under Build (Option 1) w/ at-grade SR 31 at SR 80 intersection geometry, the proposed directional median openings along SR 31 located at the frontage roads of NW Development Driveway N/ RaceTrac Driveway N and LJ's Lounge are expected to perform at acceptable LOS conditions (LOS D) or better, for the Opening Year (2025). However, in the Design Year (2045) the left turns at the directional median openings are expected to experience excessive delays.

Under Build (Option 2) w/ grade-separated crossover SR 31 at SR 80 intersection geometry, the proposed directional median opening along LJ's Lounge is expected to perform at acceptable LOS conditions (LOS D) or better, for the Opening Year (2025). However, in the Design Year (2045) the left turns at the directional median opening are expected to experience excessive delays.

Based on the operational evaluation of directional median opening traffic conditions, Build (Option 2) w/ grade-separated crossover SR 31 at SR 80 intersection geometry will help in rerouting the LJ's Lounge directional median opening traffic to the Texas U-turn located SR 80 intersection and the Marina Drive (Dock Entrance)/Restaurant Driveway intersection, in the Design Year (2045). Therefore, it is recommended to consider Build (Option 2) based on traffic evaluation results.

1.3 SR 31 at Marina and Restaurant Entrance Intersection

The combined Marina Drive (Dock Entrance)/Restaurant Driveway intersection with the proposed realignment of SR 31 showed a need for signalization starting from the Opening Year (2025) conditions based on Synchro operational evaluation and warrants analysis, where warrants 1 and 2 were satisfied.

No change from the PTAR submitted in April 2020.

Section 3.0
 INTRODUCTION

The Florida Department of Transportation (FDOT) District One is conducting a Project Development and Environmental (PD\&E) Study (Financial Project Number - 441942-1-22-01) for SR 31 from SR 80 (Palm Beach Boulevard) to SR 78 (Bayshore Road) in Lee County, Florida. This is an addendum to the Project Traffic Analysis Report (PTAR) which was submitted in April 2020. This addendum was prepared to document the following:

- The change of project analysis years to Opening Year (2025) and Design Year (2045) to be consistent with the "SR 31 PD\&E Study from SR 78 to Cook Brown Road", which is to the immediate north of this study. The PTAR submitted in April 2020 shows Opening Year (2026) and Design Year (2046).
- Revised safety evaluation of SR 31 study corridor (segment only) for a five-year period of 2017-2021.
- Revisions to Annual Average Daily Traffic (AADT) and Design Hour Volumes (DHVs) along the study corridor as a result of the proposed SR 31 realignment to the east and the proposed access modifications.
- Traffic evaluation of the directional median openings located at NW Development Driveway N/RaceTrac Driveway N \& LJ's Lounge Driveway and the traffic evaluation of the proposed full median opening at Marina \& Restaurant Entrance. This full median opening was developed because of the proposed realignment of SR 31 study corridor to the east.

Screening of intersection alternatives for the SR 31 at SR 80 signalized intersection were performed utilizing FDOT's Intersection Control Evaluation (ICE) process and documented separately. Please refer to the "ICE Technical Analysis Memorandum - Traffic and Safety Analysis at SR 80 and SR 31, Lee County, FL, August 2022" for the intersection control strategies that were identified and evaluated as part of this PD\&E Study.

3.1 Description of the Project

No change from the PTAR submitted in April 2020.

3.2 Objective

No change from the PTAR submitted in April 2020.

3.3 Methodology

No change from the PTAR submitted in April 2020.

3.4 Transportation Plan Consistency

No change from the PTAR submitted in April 2020.

TRAFFIC ANALYSIS METHOD

No change from the PTAR submitted in April 2020.

Section 5.0
 EXISTING CONDITIONS

No change from the PTAR submitted in April 2020 except safety evaluation section.

5.1 Existing Roadway Characteristics

No change from the PTAR submitted in April 2020.

5.2 Multi-Modal Facilities

No change from the PTAR submitted in April 2020.

5.3 Traffic Data Collection

No change from the PTAR submitted in April 2020.

5.4 Existing Design Traffic Characteristics

No change from the PTAR submitted in April 2020.

5.4.1 K Factor

No change from the PTAR submitted in April 2020.

5.4.2 D Factor

No change from the PTAR submitted in April 2020.

5.4.3 $\quad T_{24}$ Factor

No change from the PTAR submitted in April 2020.

5.5 Existing Year (2019) LOS Analysis

No change from the PTAR submitted in April 2020.

5.5.1 Existing Roadway LOS Analysis

No change from the PTAR submitted in April 2020.

5.5.2 Existing Year HCM Capacity Analysis

No change from the PTAR submitted in April 2020.

5.5.3 Existing Intersection Analysis - Synchro

No change from the PTAR submitted in April 2020.

5.6 Safety Evaluation

In addition to the traffic operations, safety is an important consideration in evaluating intersection alternatives. Typically, historical crash data is reviewed to gain an understanding of the current crash patterns at study intersections. Crash records were reviewed, and various crash metrics are summarized to support identification and evaluation of alternatives.

5.6.1 Historic Crash Summary

Crash data for the SR 31 segment between SR 80 and SR 78 was obtained for the most recent fiveyear period (2017-2021). A total of 33 crashes were reported during the five-year analysis period. Number of crashes per year varied from one to thirteen. Figure 5-1 shows the crashes by year. Out of the 33 crashes reported, one (3\%) fatal crash, eight (24\%) of the crashes resulted in injuries and the remaining $24(73 \%)$ were property damage only crashes. A pedestrian was involved in the fatal crash which occurred during the daylight, clear weather, dry roadway surface condition and the event happened on the shoulder along SR 31. Based on the long report, the vehicle was traveling southbound on SR 31, north of Palm Beach Boulevard and the pedestrian was walking northbound on the west side paved shoulder. The front right of the vehicle collided with the pedestrian. Rearend crashes accounted for 34% (11) of the total crashes. Majority of crashes (64\%) occurred under daylight conditions. 3 (9%) crashes occurred under wet road surface conditions. Figure 5-2 shows the summary of crashes by severity, crash type, lighting conditions and road surface conditions. Crash locations based on type of crashes and severity are depicted on Figure 5-3 and 5-4, respectively.

5.6.2 Intersection and Location Specific Crashes

Please refer to the ICE memorandum prepared for the SR 31 at SR 80 intersection for crash analysis related to this intersection.

A total seven crashes were reported at the West Marina Drive intersection. Major contributing factors are rear-ended (43\%), head-on (29\%), and angle crashes (14\%).

Over a period of five years (2017-2021), there were ten crashes that took place on the drawbridge. Out of these crashes, 60% (6) were rear-end collisions caused by failure to stop. This can most likely be attributed to the drawbridge operation.

Figure 5-1: SR 31 Segment Crash History

Figure 5-2: SR 31 Segment Crash Summary (2017-2021)

Figure 5-3: Location and Type of Crashes

Figure 5-4: Location and Severity of Crashes

5.6.3 Segment Crash Safety Ratio

Segment crash safety ratio was calculated to compare the annual crash rate of the midblock of SR 31 to the critical crash rate of similar segment throughout District One, Lee County. This method has historically been used by theFDOT and some local agencies to identify high crash locations. This method considers the traffic volumes at specific sites, considers the variance in crash data by including regional or statewide averages, and classifies roadway/intersection types into categories for more applicable comparisons. However, the safety crash ratio method includes the following limitations:

- Assumes a linear relationship between traffic volume and crashes
- Does not consider crash severity

The critical crash rate is based on the average crash rate for a similar facility adjusted by vehicle exposure and a probability constant. The safety ratio represents the actual crash rate divided by the critical crash rate. If a segment has an actual crash rate higher than the critical crash rate (i.e., safety ratio > 1.0), it may have a safety deficiency. Based on Table 5-1, the safety ratio for this segment is less than one.

Table 5-1: Segment Crash Safety Ratio

Description	Total Crashes	Actual Crash Rate	Average Crash Rate*	Critical Crash Rate	Safety Ratio
SR 31 Segment	33	1.057	0.446	1.258	0.841

*FDOT CAR Lee County, 5-year Average Crash Rate(2015-2019). See AppencixA
Crash Rate Crashes per Million Vehicle Miles Travelled (MVMT)
Rural 2-3Ln 2Wy Undivided

5.6.4 Highway Safety Manual (HSM) - Predictive Crash Analysis

The ICE memorandum completed for the SR 31 at SR 80 intersection includes predictive safety analysis for segment of SR 31study corridor from SR 80 to LJ's Lounge Driveway. This addendum includes predictive safety analysis for the SR 31 study corridor from LJ's Lounge Driveway to south of SR 78, which is the northern section of the study corridor. The analysis was conducted using the predictive methods in Chapters 12 of the HSM, Urban and Suburban Arterials (750-02021c), which apply a combination of Safety Performance Functions (SPFs), crash modification factors (CMFs), and calibration factors to estimate crash frequency for each segment and intersection. The tool was adjusted based on the crash distribution for Florida based on Table 122.6.4 from the FDOT Design Manual 2022. The growth rates were estimated based on 2025 and 2045 AADTs for this study.

Note that the resulting predictions should be used with caution if the input AADTs (highlighted cell in the HSM tools) exceed the range of data used to develop one or more of the SPFs. The SPFs to local conditions were calibrated by applying calibration factors shown in Table 122.6.3 of the

FDOT Design Manual 2022. The Empirical Bayes method is used when the proposed modification does not create a major geometric modification; therefore, the analysis is performed starting from the existing year of the project. However, Empirical Bayes method is not applicable for this project due to major improvement along SR 31 project corridor.

It is important to note that the safety analysis tools available to date are deterministic in nature and estimate future crashes mainly based on AADT and roadway characteristics. These tools do not account for vehicle interactions (driver behaviors). No-Build is expected to have extensive congestion and queues that may potentially impact crashes. Consequently, crash frequency would be higher compared to Build. Nevertheless, the overall predicted crashes are lower by 44% for Build when compared to No-Build alternative due to added capacity along the SR 31. However, predictive crashes anticipated to increase under Build alternative at the intersection of Marina Drive (Dock Entrance)/ Restaurant Entrance and SR 31 intersection due to installation traffic signal. Traffic signal do not always prevent crashes. In many instances, the total number of crashes and injuries increase after installation of the traffic signal. However, most comment results showed that a reduction in right-angle collisions which is prone to severe crash injury. Detailed analyses are provided in Appendix B.

Section 6.0 DEVELOPMENT OF FUTURE YEAR TRAFFIC FORECASTS

Future year traffic forecasts for the major roadways in the study area were developed by the Department as part of the PD\&E study conducted on SR 31 from SR 80 to Cook Brown Road. These major roadway traffic forecasts and local developments adjacent to the project corridor were used to develop study corridor specific AADTs and DHVs for the No-Build condition and were documented in the "Traffic Forecasts Memorandum" prepared as part of this study.

The No-Build traffic forecasts and the access plan prepared for the Build alternatives was used to develop the Build traffic forecasts for this study. The Build alternatives access management plan is documented in the "Access Management Memorandum" prepared for this study.

6.1 Description of Alternatives

Based on discussions with the Department, No-Build Alternative and a Build Alternative were evaluated for Opening Year and Design Year. All the alternatives considered are described in this section.

6.1.1 No-Build Alternative

Similar to existing conditions, the No-Build Alternative assumes that the SR 31 project corridor is a two-lane arterial facility. The intersection geometries and driveway access locations were also assumed to be the same as existing in the No-Build condition.

6.1.2 Build Alternatives

SR 31 is planned to be widened to a six-lane divided facility from SR 80 to Horseshoe Road and a four-lane divided facility from Horseshoe Road to Cook Brown Road. Therefore, within the project limits, SR 31 is assumed to be six-lane divided facility.

The proposed intersection geometries and median opening/ driveway access locations in the Build condition differ from the No-Build as the proposed corridor is a divided roadway. Also, in the proposed Build alternatives, the median opening/ driveway locations vary depending on whether SR 31 at SR 80 intersection is at-grade or grade-separated.

The location of median openings for Build (Option 1) w/ at-grade SR 31 at SR 80 intersection geometry are listed below:

- Directional Median Openings:
- SR 31 at Frontage Roads (NW Development Driveway N/ RaceTrac Driveway N)
- SR 31 at LJ's Lounge
- Full Median Opening
- SR 31 at Marina and Restaurant Entrance

The location of median openings for Build (Option 2) w/ grade-separated crossover SR 31 at SR 80 intersection geometry are listed below:

- Directional Median Openings:
- SR 31 at LJ's Lounge
- Full Median Opening
- SR 31 at Marina and Restaurant Entrance

The screening of alternatives for the SR 31 at SR 80 signalized intersection were performed utilizing FDOT's ICE process and documented separately. Please refer to the "ICE Technical Analysis Memorandum - Traffic and Safety Analysis at SR 80 and SR 31, Lee County, FL, August 2022" for the intersection control strategies that were identified and evaluated as part of this PD\&E Study.

Figure 6-1 shows the No-Build schematic diagram and the proposed Build configuration schematic diagrams with the revised alignment and access changes.

6.2 AADTs and DHVs

Figure 6-2 illustrates the No-Build and Build AADTs for the major road segments and driveways within the study area for Opening Year (2025) and Design Year (2045).

Figure 6-3 and 6-4 illustrates the No-Build DHVs for Opening Year (2025) and Design Year (2045), respectively.

Figure 6-5, 6-6, 6-7 and 6-8 illustrates the Build DHVs for Opening Year (2025) and Design Year (2045), respectively. The Build configuration assumes the proposed access changes along the project corridor to re-distribute the driveway traffic along the project corridor

6.3 Lane Geometry

Figure 6-9 and 6-10 illustrates the intersection geometry used for the Build analysis.

Figure 6-1: No-Build and Build Configuration Schematics

Figure 6-2: Annual Average Daily Traffic (AADT) Volumes

Figure 6-3: No-Build - Opening Year (2025) Design Hour Volumes

5

4

3

Figure 6-4: No-Build - Design Year (2045) Design Hour Volumes

(5)

4

Figure 6-5: Build (Option 1) - Opening Year (2025) Design Hour Volumes

At-Grade: SR 31 at SR 80 Intersection

	Driveway
	Roadway
"-":	Proposed Driveway
	Proposed Realignment
XX(XX)	AM(PM)
ST0P	Stop Control
吾	Signal Control
部	Proposed Signal Control

(4)

(3)

(2)
$\stackrel{\rightharpoonup}{-}$

Figure 6-6: Build (Option 1) - Design Year (2045) Design Hour Volumes
At-Grade: SR 31 at SR 80 Intersection

	Driveway
	Roadway
"-":	Proposed Driveway
	Proposed Realignment
$\mathrm{XX}(\mathrm{XX})$	AM(PM)
STop	Stop Control
否	Signal Control
部	Proposed Signal Control

4

(3)

(2)
(1)

Figure 6-7: Build (Option 2) - Opening Year (2025) Design Hour Volumes
Flyover Overpass with Crossover: SR 31 at SR 80 Intersection

	Driveway
-	Roadway
	Proposed Bridge
""*"	Proposed Driveway
	Proposed Realignment
$\mathrm{xx}(\mathrm{XX})$	AM(PM)
ST0\%	Stop Control
产	Signal Control
害	Proposed Signal Control

4

3

Figure 6-8: Build (Option 2) - Design Year (2045) Design Hour Volumes
Flyover Overpass with Crossover: SR 31 at SR 80 Intersection

	Driveway
	Roadway
--"."	Proposed Driveway
	Proposed Realignment
	Proposed Bridge
XX(XX)	AM(PM)
ST00	Stop Control
䂞	Signal Control
찰	Proposed Signal Control

4

3

2

1

Figure 6-9: Build Alternative (Option 1) - Lane Geometry
At-Grade: SR 31 at SR 80 Intersection

4

	Driveway
	Roadway
":- =	Proposed Driveway
$1 \times \square$	Proposed Realignment
\leftarrow	Existing Lanes
$4 . .$.	Proposed Lanes
S508	Stop Control
硈	Signal Control
\%	Proposed Signal Control

2

Figure 6-10: Build Alternative (Option 2) - Lane Geometry
FLyover Overpass with Crossover: SR 31 at SR 80 Intersection

	Driveway
	Roadway
-*-"*	Proposed Driveway
	Proposed Bridge
1■■	Proposed Realignment
\leftarrow	Existing Lanes
$4 . .$.	Proposed Lanes
ST0P	Stop Control
홉	Signal Control
\#	Proposed Signal Control

Utilizing the forecasted volumes, future year capacity analyses was performed for opening year (2025) and design year (2045). This section provides a summary of the traffic analysis conducted for No-Build and Build alternatives. Screening of intersection alternatives for the SR 31 at SR 80 signalized intersection were performed utilizing FDOT's ICE process and documented separately. Please refer to the "ICE Technical Analysis Memorandum - Traffic and Safety Analysis at SR 80 and SR 31, Lee County, FL, August 2022" for the intersection control strategies that were identified and evaluated as part of this PD\&E Study.

7.1 Future Year Roadway Analysis

No change from the PTAR submitted in April 2020. The analysis years changed to Opening Year (2025) and Design Year (2045). However, the traffic volumes used for the analysis remained the same.

7.1.1 No-Build Alternative HCM Capacity Analysis

No change from the PTAR submitted in April 2020.

7.1.2 Build Alternative HCM Capacity Analysis

No change from the PTAR submitted in April 2020.

7.2 Future Year Intersection Analysis

Intersection analysis was conducted using Synchro. The delay and LOS conditions at the signalized and unsignalized conditions were reported using the HCM $6^{\text {th }}$ Edition module in Synchro. The following intersections were evaluated under the Build conditions:

- Directional Median Openings:
- SR 31 at Frontage Roads (NW Development Driveway N/ RaceTrac Driveway N) - This directional median opening was proposed only with the at-grade (Option 1) SR 31 and SR 80 intersection geometry.
- SR 31 at LJ's Lounge - This directional median opening was proposed with both at-grade (Option 1) and grade-separated (Option 2) SR 31 and SR 80 intersection geometry
- Full Median Opening

SR 31 at Marina and Restaurant Entrance (Signal) - Preliminary evaluation conducted for this median opening by assuming bi-directional and full median openings (without a signal) has shown excessive delay conditions for the traffic entering and exiting the Marina and Restaurant Entrance driveway. This median opening will remain signalized under both at-grade (Option 1) and grade-separated (Option 2) SR 31 and SR 80 intersection geometry. Appendix C presents the preliminary synchro evaluation results for this median opening.

7.2.1 Warrants Analysis - SR 31 at Marina and Restaurant Entrance Intersection

In addition to the preliminary Synchro analysis conducted for the SR 31 at Marina and Restaurant Entrance intersection, a traffic signal warrants analysis as outlined in the Manual of -Uniform Traffic Control Devices (MUTCD), was also performed for the Opening Year (2025), Mid-Year (2035) and Design Year (2045) conditions using form 750-020-01. The eight-hour volumes required for future traffic evaluation were developed based on existing traffic counts collected at the Marina and Restaurant driveways and SR 31. The following warrants were applicable for this intersection and were evaluated:

Warrant 1 (eight-hour vehicular volume) - This warrant is applicable where a large volume of intersecting traffic is the principal reason to consider a traffic signal. To meet this warrant, specific traffic volumes on the major street and the higher volume minor street approach must be met or exceeded for at least eight hours on an average day. Because the traffic volume on major street (SR 31) is heavy and the traffic on the minor intersecting street suffers excessive delay, the Interruption of Continuous Traffic, Condition B, volume thresholds were used in Warrant 1. In addition, the 70% volume level was used as one of the volume level criteria in accordance with the MUTCD guidelines as the proposed posted speed limit along SR 31 in the Build condition is 45 mph . This warrant was satisfied as Warrant 1 - Condition B is 100% met for eight hours.

Warrant 2 (four-hour vehicular volume) - Four Hour Vehicular Volumes: This warrant is intended to be applied where the volume of the intersecting traffic is the principal reason to install a traffic signal. This warrant requires the volumes of any four hours to be plotted above the applicable curve, shown on analysis sheets for Warrant 2. This warrant was satisfied as four-hour volumes were plotted above the applicable curve.

A summary of the warrant analysis results is presented in Table 7-1. Appendix D presents the eight-hour peak volumes developed for warrants analysis and the signal warrants evaluation worksheets.

Table 7-1: Warrants Analysis - SR 31 at Marina and Restaurant Entrance

Warrant \#	Warrant Name	Satisfied (Yes/No)		
		Year 2025	Year 2035	Year 2045
$\mathbf{1}$	Eight-Hour Vehicular Volume	Yes	Yes	Yes
$\mathbf{2}$	Four-Hour Vehicular Volume	Yes	Yes	Yes

7.2.2 No-Build Alternative Intersection Analysis

Intersection analysis was not conducted for the No-Build alternative as the segment analysis from the PTAR submitted in April 2020 reported LOS F conditions.

7.2.3 Build Alternative Intersection Analysis

The Build condition intersection evaluation was conducted for the Opening Year (2025) and Design Year (2045). The delay and LOS conditions are presented in Table 7-2 and 7-3 when analyzed with at-grade SR 31 at SR 80 intersection geometry (Option 1) for the Opening Year (2025) and Design Year (2045), respectively. The delay and LOS conditions are presented in Table 7-4 and 7-5 when analyzed with grade-separated crossover SR 31 at SR 80 intersection geometry (Option 2) for the Opening Year (2025) and Design Year (2045), respectively.

Build (Option 1): w/ At-Grade SR 31 at SR 80 Intersection Geometry

The directional median opening intersections located at the frontage roads of NW Development Driveway N/ RaceTrac Driveway N and LJ's Lounge are expected to perform under acceptable LOS conditions for the Opening Year (2025). However, under the Design Year (2045) conditions the directional median opening intersections are expected to experience excessive delays.

Traffic operational analysis conducted for the combined Marina Drive (Dock Entrance)/Restaurant Driveway with the proposed realignment of SR 31 and with signalization shows acceptable LOS conditions.

Build (Option 2): w/ Grade-Separated crossover SR 31 at SR 80 Intersection Geometry

The directional median opening intersections located at LJ's Lounge is expected to perform under acceptable LOS conditions for the Opening Year (2025). However, under the Design Year (2045) conditions this directional median opening is expected to experience excessive delays.

Similar to Build Option 1, Traffic operational analysis conducted for the combined Marina Drive (Dock Entrance)/Restaurant Driveway with the proposed realignment of SR 31 and with signalization shows acceptable LOS conditions.
Appendix E presents the Synchro analysis outputs for the Opening Year (2025) and Design Year (2045) conditions.

Table 7-2: Build (Option 1) - Opening Year (2025) Intersection Delay/LOS

AM Peak														
Roadway	Cross-Street	Eastbound			Westbound			Northbound			Southbound			Overall
		Left	Thru	Right										
SR 31	SR 80**	Refer to ICE Memorandum												
	Frontage Roads NW Dev. Drwy N/RaceTrac Drwy N*	-	-	16.8/C	-	-	14.4/B	19.5/C	-	-	15.1/C	-	-	19.5/C
	LJs Lounge*	-	-	-	-	-	0/A	14.1/B	-	-	12.2/B	-	-	14.1/B
	Marina Dr (Dock Ent)/ Restaurant Drwy**	26.6/C	0/A	30.1/C	27.3/C	0/A	0/A	38.3/D	6.6/A	7/A	36.8/D	8.2/A	6/A	10/A
PM Peak														
SR 31	SR 80**	Refer to ICE Memorandum												
	Frontage Roads NW Dev. Drwy N/RaceTrac Drwy N*	-	-	26.1/D	-	-	24.1/C	19.3/C	-	-	32.6/D	-	-	32.6/D
	LJs Lounge*	-	-	-	-	-	18.2/C	14.2/B	-	-	21.5/C	-	-	21.5/C
	Marina Dr (Dock Ent)/ Restaurant Drwy**	24.8/C	0/A	30.2/C	24.7/C	0/A	0/A	38.1/D	8.8/A	9.4/A	35.6/D	9/A	7.4/A	11.6/B

Note: 00.0/X - Delay/LOS. LOS E and LOS F movements are shown in yellow and orange, respectively. Delay is reported in sec/veh

* Unsignalized intersections with directional median openings/ ** Signalized intersections

Worst movement delay was reported as overall intersection delay for unsignalized intersections
Table 7-3: Build (Option 1) - Design Year (2045) Intersection Delay/LOS

AM Peak														
Roadway	Cross-Street	Eastbound			Westbound			Northbound			Southbound			Overall
		Left	Thru	Right										
SR 31	SR 80**	Refer to ICE Memorandum												
	Frontage Roads NW Dev. Drwy N/RaceTrac Drwy N*	-	-	89.4/F	-	-	38.7/E	227.6/F	-	-	130/F	-	-	227.6/F
	LJs Lounge*	-	-	-	-	-	0/A	131.9/F	-	-	47.7/E	-	-	131.9/F
	Marina Dr (Dock Ent)/ Restaurant Drwy**	45.1/D	0/A	51.2/D	46.9/D	0/A	0/A	65.3/E	9.1/A	10.2/B	58.7/E	16.1/B	5.8/A	15.4/B
PM Peak														
SR 31	SR 80**	Refer to ICE Memorandum												
	Frontage Roads NW Dev. Drwy N/RaceTrac Drwy N*	-	-	520.9/F	-	-	541/F	300.8/F	-	-	-	-	-	541/F
	LJs Lounge*	-	-	-	-	-	105.4/F	141.7/F	-	-	1574.1/F	-	-	1574.1/F
	Marina Dr (Dock Ent)/ Restaurant Drwy**	37.7/D	0/A	46/D	38.9/D	0/A	0/A	51.8/D	17/B	20.8/C	52.8/D	14/B	7.3/A	18.3/B

Note: 00.0/X - Delay/LOS. LOS E and LOS F movements are shown in yellow and orange, respectively. Delay is reported in sec/veh

* Unsignalized intersections with directional median openings/ ** Signalized intersections

Worst movement delay was reported as overall intersection delay for unsignalized intersections

Table 7-4: Build (Option 2) - Opening Year (2025) Intersection Delay/LOS

AM Peak														
Roadway	Cross-Street	Eastbound			Westbound			Northbound			Southbound			Overall
		Left	Thru	Right										
	SR 80**	Refer to ICE Memorandum												
SR 31	Frontage Roads NW Dev. Drwy N/RaceTrac Drwy N*	Not Applicable												
	LJs Lounge*	-	-	-	-	-	0/A	14.7/B	-	-	12.2/B	-	-	14.7/B
	Marina Dr (Dock Ent)/ Restaurant Drwy**	26.6/C	0/A	30.1/C	27.3/C	0/A	0/A	38.3/D	6.6/A	7/A	36.8/D	8.2/A	6/A	10/A
PM Peak														
SR 31	SR 80**	Refer to ICE Memorandum												
	Frontage Roads NW Dev. Drwy N/RaceTrac Drwy N*	Not Applicable												
	LJs Lounge*	-	-	-	-	-	18.2/C	16.3/C	-	-	21.5/C	-	-	21.5/C
	Marina Dr (Dock Ent)/ Restaurant Drwy**	24.8/C	0/A	30.2/C	24.7/C	0/A	0/A	38.1/D	8.8/A	9.4/A	35.6/D	9/A	7.4/A	11.6/B

Note: 00.0/X - Delay/LOS. LOS E and LOS F movements are shown in yellow and orange, respectively. Delay is reported in sec/veh

* Unsignalized intersections with directional median openings/ ** Signalized intersections

Worst movement delay was reported as overall intersection delay for unsignalized intersections
Table 7-5: Build (Option 2) - Design Year (2045) Intersection Delay/LOS

AM Peak														
Roadway	Cross-Street	Eastbound			Westbound			Northbound			Southbound			Overall
		Left	Thru	Right										
SR 31	SR 80**	Refer to ICE Memorandum												
	Frontage Roads NW Dev. Drwy N/RaceTrac Drwy N*							t Applica						
	LJs Lounge*	-	-	-	-	-	0/A	231/F	-	-	47.7/E	-	-	231/F
	Marina Dr (Dock Ent)/ Restaurant Drwy**	45.1/D	0/A	51.2/D	46.9/D	0/A	0/A	65.3/E	9.1/A	10.2/B	58.7/E	16.1/B	5.8/A	15.4/B
PM Peak														
SR 31	SR 80**	Refer to ICE Memorandum												
	Frontage Roads NW Dev. Drwy N/RaceTrac Drwy N*	Not Applicable												
	LJs Lounge*	-	-	-	-	-	105.4/F	368.7/F	-	-	1574.1/F	-	-	1574.1/F
	Marina Dr (Dock Ent)/ Restaurant Drwy**	37.7/D	0/A	46/D	38.9/D	0/A	0/A	51.8/D	17/B	20.8/C	52.8/D	14/B	7.3/A	18.3/B

Note: 00.0/X - Delay/LOS. LOS E and LOS F movements are shown in yellow and orange, respectively. Delay is reported in sec/veh

* Unsignalized intersections with directional median openings/ ** Signalized intersections

Worst movement delay was reported as overall intersection delay for unsignalized intersections

SUMMARY OF ANALYSIS RESULTS
Based on the future year analysis results, the SR 31 study corridor in the No-Build condition is not expected to operate at acceptable LOS condition (LOS D) or better, under both Opening Year (2025) and Design Year (2045) conditions. In the Build condition, the proposed widening of SR 31 to a six-lane facility is expected to improve traffic operations within the study area.

8.1 SR 31 at SR 80 Intersection

Please refer to the ICE Memorandum prepared for this intersection as part of this study.

8.2 Directional Median Openings

Further, under Build (Option 1) w/ at-grade SR 31 at SR 80 intersection geometry, the proposed directional median openings along SR 31 located at the frontage roads of NW Development Driveway N/ RaceTrac Driveway N and LJ's Lounge are expected to perform at acceptable LOS conditions (LOS D) or better, for the Opening Year (2025). However, in the Design Year (2045) the left turns at the directional median openings are expected to experience excessive delays.

Under Build (Option 2) w/ grade-separated crossover SR 31 at SR 80 intersection geometry, the proposed directional median opening along LJ's Lounge is expected to perform at acceptable LOS conditions (LOS D) or better, for the Opening Year (2025). However, in the Design Year (2045) the left turns at the directional median opening are expected to experience excessive delays.

Based on the operational evaluation of directional median opening traffic conditions, Build (Option 2) w/ grade-separated crossover SR 31 at SR 80 intersection geometry will help in rerouting the LJ's Lounge directional median opening traffic to the Texas U-turn located SR 80 intersection and the Marina Drive (Dock Entrance)/Restaurant Driveway intersection, in the Design Year (2045). Therefore, it is recommended to consider Build (Option 2) based on traffic evaluation results.

8.3 SR 31 at Marina and Restaurant Entrance Intersection

The combined Marina Drive (Dock Entrance)/Restaurant Driveway intersection with the proposed realignment of SR 31 showed a need for signalization starting from the Opening Year (2025) conditions based on Synchro operational evaluation and warrants analysis, where warrants 1 and 2 were satisfied.

APPENDICES

Appendix A
 Lee County - Average Crash Rates Table

District	County	Crash Rate Category Average C		Crash	边		Average	Average
1	Lee	Interstate Urban 0.48592	1	2395	4931	142	202809	221380
1	Lee	Interstate Rural 0.33573	0	163	486	29	208367	208169
1	Lee	Toll Road Urban 0	0	0	0	0	0	0
1	Lee	Toll Road Rural 0	0	0	0	0	0	0
1	Lee	Urban Other Limited Acce 0	0	0	0	0	0	0
1	Lee	Rural Other Limited Acces 0	0	0	0	0	0	0
1	Lee	Ramp Urban 0	361	38	8	4	96430	97034
1	Lee	Ramp Rural 0	995	735	258	90	141823	142651
1	Lee	Urban 2-3Ln 2Wy Divd Ra: 21.67104	205	51	12	3	205869	194922
1	Lee	Urban 2-3Ln 2Wy Divd Pa' 4.10853	82	363	108	18	94142	115001
1	Lee	Urban 2-3Ln 2Wy Undivd 6.32592	47	41	14	5	40777	30346
1	Lee	Suburban 2-3Ln 2Wy Divd 6.70918	39	265	45	6	115072	129724
1	Lee	Suburban 2-3Ln 2Wy Divd 3.29995	158	685	255	43	257639	319875
1	Lee	Suburban 2-3Ln 2Wy Und 0.97159	22	401	435	94	343441	428140
1	Lee	Rural 2-3Ln 2Wy Divd Rasio	0	0	4	0	0	0
1	Lee	Rural 2-3Ln 2Wy Divd Pav 2.40905	1	29	12	4	880936	878176
1	Lee	Rural 2-3Ln 2Wy Undivd 0.446	0	26	58	23	656424	1082453
1	Lee	Urban 4-5Ln 2Wy Divd Ra: 3.12448	234	2503	876	83	208581	212512
1	Lee	Urban 4-5Ln 2Wy Divd Pa' 1.80074	41	354	219	24	273200	318362
1	Lee	Urban 4-5Ln 2Wy Undivd 5.05676	36	168	40	5	138064	157836
1	Lee	Suburban 4-5Ln 2Wy Divd 2.21096	471	2399	1298	122	230904	259283
1	Lee	Suburban 4-5Ln 2Wy Divd 1.52661	18	500	339	29	157394	169875
1	Lee	Suburban 4-5Ln 2Wy Und 0	0	0	0	0	0	0
1	Lee	Rural 4-5Ln 2Wy Divd Ras 0.73886	3	199	273	38	586538	637056
1	Lee	Rural 4-5Ln 2Wy Divd Pav 0	0	0	0	0	0	0
1	Lee	Rural 4-5Ln 2Wy Undivd 0	0	0	0	0	0	0
1	Lee	Urban 6+Ln 2Wy Divd Ras 2.84582	324	3117	1209	81	155904	168539
1	Lee	Urban 6+Ln 2Wy Divd Pav 5.1132	19	1332	264	17	170953	175876
1	Lee	Urban 6+Ln 2Wy Undivd 0	0	0	1	0	0	0
1	Lee	Suburban 6+Ln 2Wy Divd 2.17622	276	4928	2391	134	172005	175905
1	Lee	Suburban 6+Ln 2Wy Divd 0	0	0	0	0	0	0
1	Lee	Suburban 6+Ln 2Wy Undii0	0	0	0	0	0	0
1	Lee	Rural 6+Ln 2Wy Divd Rasd 0	0	0	0	0	0	0
1	Lee	Rural 6+Ln 2Wy Divd Pavc 0	0	0	0	0	0	0
1	Lee	Rural 6+Ln 2Wy Undivd 0	0	0	0	0	0	0
1	Lee	Urban One Way 3.66094	127	244	101	23	165220	193438
1	Lee	Suburban One Way 2.95697	50	48	33	7	453988	474594
1	Lee	Rural One Way 0	2	0	0	15	95955	114450
1	Lee	Undefined 0	98	158	0	0	220582	221619
1	Lee	Not Coded 1.59981	733	21142	13673	1039	198783	215063

District	County	Crash Rate Category Total Prow	倍	倍	,
1	Lee	Interstate Urban 1616	359	293	98
1	Lee	Interstate Rural 118	19	19	5
1	Lee	Toll Road Urban 0	0	0	0
1	Lee	Toll Road Rural 0	0	0	0
1	Lee	Urban Other Limited Acce 0	0	0	0
1	Lee	Rural Other Limited Acces 0	0	0	0
1	Lee	Ramp Urban 261	82	45	10
1	Lee	Ramp Rural 1097	368	196	57
1	Lee	Urban 2-3Ln 2Wy Divd Ra: 154	67	28	4
1	Lee	Urban 2-3Ln 2Wy Divd Pa' 257	102	61	25
1	Lee	Urban 2-3Ln 2Wy Undivd 64	19	5	0
1	Lee	Suburban 2-3Ln 2Wy Divd 182	74	38	9
1	Lee	Suburban 2-3Ln 2Wy Divd 463	177	138	53
1	Lee	Suburban 2-3Ln 2Wy Und 255	83	52	24
1	Lee	Rural 2-3Ln 2Wy Divd Rasio	0	0	0
1	Lee	Rural 2-3Ln 2Wy Divd Pav 15	8	4	1
1	Lee	Rural 2-3Ln 2Wy Undivd 13	3	3	6
1	Lee	Urban 4-5Ln 2Wy Divd Ra: 1608	665	325	110
1	Lee	Urban 4-5Ln 2Wy Divd Pa' 218	95	57	19
1	Lee	Urban 4-5Ln 2Wy Undivd 103	72	24	4
1	Lee	Suburban 4-5Ln 2Wy Divd 1574	708	432	121
1	Lee	Suburban 4-5Ln 2Wy Divd 285	135	74	21
1	Lee	Suburban 4-5Ln 2Wy Und 0	0	0	0
1	Lee	Rural 4-5Ln 2Wy Divd Ras 107	39	31	17
1	Lee	Rural 4-5Ln 2Wy Divd Pav 0	0	0	0
1	Lee	Rural 4-5Ln 2Wy Undivd 0	0	0	0
1	Lee	Urban 6+Ln 2Wy Divd Ras 2014	894	410	99
1	Lee	Urban 6+Ln 2Wy Divd Pav 749	383	160	47
1	Lee	Urban 6+Ln 2Wy Undivd 0	0	0	0
1	Lee	Suburban 6+Ln 2Wy Divd 3056	1344	589	173
1	Lee	Suburban 6+Ln 2Wy Divd 0	0	0	0
1	Lee	Suburban 6+Ln 2Wy Undii0	0	0	0
1	Lee	Rural 6+Ln 2Wy Divd Rasd 0	0	0	0
1	Lee	Rural 6+Ln 2Wy Divd Pavc 0	0	0	0
1	Lee	Rural 6+Ln 2Wy Undivd 0	0	0	0
1	Lee	Urban One Way 207	120	32	6
1	Lee	Suburban One Way 51	21	20	3
1	Lee	Rural One Way 1	0	1	0
1	Lee	Undefined 132	90	24	7
1	Lee	Not Coded 12855	5226	2729	839

Appendix B HSM Predictive Crash Analysis

In accordance with the Department's Highway Safety Manual Implementation Policy (Topic No. 000-500-001), "the transportation analyst is encouraged to use the Highway Safety Manual (HSM) methods, where applicable, to measure safety benefits from proposed improvements."

122.6.1 Historical Crash Method (HCM)

This method can be used for sites with a crash history. The historical crash analysis for Design Exceptions and Design Variations includes a review of crashes from within the FDOT Crash Analysis Reporting (CAR) system database and the SIGNAL FOUR ANALYTICS (SFA) system database. Department approval is required for access to the data within these systems and can be obtained through the district offices.

The FDOT CAR system database includes verified crash data for all fatal and serious injury (KA) crashes typically up to the current date and for all crash types (KABCO) up to 2018 (latest completed data set). These crashes should be included in all HCM analyses. The Signal Four database includes all crash types (KABCO) up to the current date and should be used to supplement the crashes reported from the FDOT CAR system database to establish a complete dataset of crashes over the analysis period. Due to the overlap of crash data within the two systems, proper vetting of the dataset is required to ensure that crashes are not duplicated within the analysis.

The B / C (benefit/cost) ratio is the ratio of the estimated annual reduction in crash costs to the estimated annual increase in combined construction and maintenance costs. The annualized conversion will show whether the projected expenditure of funds for the crash benefit will exceed the direct cost for the improvement.

The HCM uses the Highway Safety Improvement Program Guideline (HSIPG) cost per crash by facility type in Table 122.6.1 to estimate benefit to society, while the cost to society is estimated by the expected cost of right of way, construction, and maintenance.

Table 122.6.1 FDOT Average Crash Costs by Facility Type

Type Facility	Divided Roadway			Undivided Roadway		
	$\$ 107,732$	$\$ 201,527$	$\$ 355,183$	$\$ 124,618$	$\$ 267,397$	$\$ 523,727$
$4-5$ Lanes	$\$ 123,406$	$\$ 225,315$	$\$ 473,637$	$\$ 112,896$	$\$ 190,276$	n / a
6+ Lanes	$\$ 123,598$	$\$ 166,258$	$\$ 451,492$	$\$ 41,650$	n / a	n / a
Interstate	$\$ 153,130$	n / a	$\$ 327,385$	n / a	n / a	n / a
Turnpike	$\$ 132,199$	n / a	$\$ 274,012$	n / a	n / a	n / a

Notes:
(1) Average Cost/Crash: \$159,093
(2) The above values were derived from 2014 through 2018 traffic crash and injury severity data for crashes on state roads in Florida using the formulation described in FHWA Technical Advisory "Motor Vehicle Accident Costs", T7570.2, dated October 31, 1994. Base costs derived from a memorandum from USDOT: "Guidance on Treatment of the Economic Value of a Statistical Life (VSL) in the U.S. Department of Transportation Analyses", dated August 8, 2016 updating the value of life saved from $\$ 9.4$ million to $\$ 9.6$ million for 2015 data with a growth factor applied to increase the base cost to $\$ 9.7$ million in the current analyses. Costs are computed for the actively state-maintained State Highway System (SHS) only.
(3) Link to Revised Departmental Guidance 2013

When utilizing predictive methods or crash severity distributions for analysis, the following crash severity level costs should be used:

Table 122.6.2 FDOT KABCO Crash Costs

Crash Severity	Comprehensive Crash Cost
Fatal (K)	$\$ 10,890,000$
Severe Injury (A)	$\$ 888,030$
Moderate Injury (B)	$\$ 180,180$
Minor Injury (C)	$\$ 103,950$
Property Damage Only (O)	$\$ 7,700$
Note: (1) Source: Florida Department of Transportation State Safety Office's Crash Analysis Reporting (CAR) System, analysis years 2014 through 2018. Published by FDOT State Safety Office on 11/5/2020.	

122.6.2 Roadside Safety Analysis Program (RSAP)

This method complements the AASHTO Roadside Design Guide, dated June 2011. When hazards cannot be removed or relocated, designers need to determine if a safety device, such as a guardrail or a crash cushion, is warranted to protect motorists from the roadside obstacle. This method can be used to perform a benefit/cost analysis comparing a potential safety treatment with the existing or baseline conditions (i.e., the do-nothing option) or alternative safety treatments. Based on the input of information available to the user (e.g., offsets, traffic, slopes, crash history, traffic accident severity levels), the program will offer results which can be used in comparing design alternatives.

122.6.3 Highway Safety Manual

The AASHTO Highway Safety Manual (HSM) provides analytical tools and techniques for quantifying the potential effects on crashes as a result of decisions made in planning, design, operations, and maintenance. The new techniques and knowledge in the HSM reflect the evolution in safety analysis from descriptive (historical) methods to quantitative, predictive analyses. In the HSM, crash frequency is the fundamental basis for safety analysis and is used to reduce crashes and severities through the selection of alternative treatments.

The HSM includes Safety Performance Functions (SPFs) for many roadway segment and intersection applications. SPFs are equations used to estimate or predict the expected
average crash frequency per year at a location as a function of traffic volume and roadway characteristics. Adjust SPFs to local conditions by applying calibration factors shown in Table 122.6.3. The use of HSMSPF and Crash Modification Factors (CMF), with an Empirical Bayes (EB) adjustment, provides research-based solutions for use in Benefit/Cost comparisons. Crash distributions presented in Table 122.6.4 and KABCO costs as specified in Table 122.6.2 should be used in determining benefits from an HSM analysis.

Table 122.6.3 HSM Calibration Factors for Florida

	Type Facility	Abbreviation	Calibration Factor (Cx)
FDOT Roadway Calibration Factors			
Rural	2-lane Undivided	R2U	1.00
	4-lane Divided	R4D	0.68
Urban	2-lane Undivided	U2U	1.02
	3-lane with a Center Two-Way Left Turn Lane	U32LT	1.04
	4-lane Undivided	U4U	0.73
	4-lane Divided	U4D	1.63
	5-lane with a Center Two-Way Left Turn Lane	U52LT	0.70
FDOT Intersection Calibration Factors			
Rural	2-lane 3-Leg Stop-Controlled	RTL3ST	1.27
	2-lane 4-Leg Stop-Controlled	RTL4ST	0.74
	2-lane 4-Leg Signalized	RTL4SG	0.92
	Multilane 3-Leg Stop-Controlled	RML3ST	2.20
	Multilane 4-Leg Stop-Controlled	RML4ST	1.64
	Multilane 4-Leg Signalized	RML4SG	0.45
Urban	3-Leg Stop-Controlled Intersection	USA3ST	1.14
	4-Leg Stop-Controlled Intersection	USA4ST	1.87
	3-Leg Signalized w/o Ped. CMFs	USA3SG w/o Ped.	2.58
	3-Leg Signalized w/ Ped. CMFs	USA3SG w/ Ped.	2.50
	4-Leg Signalized	USA4SG	2.27

Table 122.6.4 HSM Crash Distribution for Florida

Type Facility		Abbreviation	K	A	B	C	0
Rural Roadways	2-lane Undivided	R2U	0.028	0.094	0.181	0.187	0.509
	4-lane Undivided	R4U	0.033	0.093	0.164	0.186	0.524
	4-lane Divided	R4D	0.028	0.090	0.187	0.196	0.499
Urban \& Suburban Arterials	2-lane Undivided	U2U	0.009	0.050	0.150	0.224	0.567
	3-lane TWLTL	U32LT	N/A				
	4-lane Undivided	U4U	0.004	0.031	0.110	0.204	0.650
	4-lane Divided	U4D	0.008	0.046	0.142	0.234	0.571
	5-lane TWLTL	U52LT	N/A				
Freeways	Rural		0.017	0.065	0.143	0.163	0.612
	Urban		0.006	0.035	0.113	0.206	0.641
	Ramps		0.004	0.032	0.107	0.210	0.647
All	All Roadways and Ramps		0.007	0.041	0.124	0.217	0.611
Notes:	A - Incapacitating Injury K - Fatality B - Non-incapacitating Inju				- Possible (or minor) Injury - Property Damage Only		
Data Source: Florida Department of Transportation, State Safety Office's Crash Analysis Reporting (CAR) database, analysis years 2014 through 2018. Publishing by FDOT State Safety Office on 11/5/2020.							

Tools and spreadsheets for use with these analytical methods have been developed and are available on the following websites:

https://safety.fhwa.dot.gov/rsdp/hsm.aspx

https://www.fdot.gov/roadway/QA/Tools.shtm

122.7 Design Approval Request

122.7.1 Submittal Package

The submittal package for a Design Exception or a Design Variation will include the same items. However, the required documentation and necessary level of detail will vary depending on the design element being evaluated (as described in FDM 122.4). The Design Exception or Design Variation submittal package is to include the following items:
(1) Submittal/Approval Letter (cover letter): Form 122-A (see FDM 103).
(2) Signed and Sealed Report: The signed and sealed documents including all required documentation and justification (see FDM 122.4 for documentation requirements). Multiple design elements and signed and sealed reports may be included in one submittal package.
(3) Appendices (as needed): Include any support documentation to facilitate an understanding of the report. Supplemental documents do not alter the sealed analysis or design.

Sign and seal the report in accordance with FDM 130. A Submittal/Approval Letter (Form 122-A, see FDM 103) is to be attached to the Signed and Sealed Report and submitted to the District or Turnpike Design Engineer. The District or Turnpike Design Engineer then approves or denies the request and notifies the Responsible Engineer. When further approvals are required, the District or Turnpike Design Engineer will forward the Submittal/Approval Letter and Sealed Report to the State Roadway Design Office.

122.7.2 Design Exception Approval

The request will be reviewed by the State Roadway Design Engineer and may be forwarded for approval to the Chief Engineer, the State Structures Design Engineer, the Planning Office, and FHWA, as appropriate.

Each request will be reviewed on a case-by-case basis and approved on its merits. When approval is obtained, the State Roadway Design Office will email the disposition to the District or Turnpike Design Engineer along with the signed Submittal/Approval Letter. The State Roadway Design Office will keep an electronic copy filed under the assigned reference number.

When a request is denied, the State Roadway Design Office will notify the District or Turnpike Design Engineer of the disposition. Denied requests can be resubmitted when all deficiencies, noted in the denial notification, have been addressed. This may require
only a new Submittal/Approval Letter if the Sealed Report does not need to be amended; however, if the Sealed Report requires revision, a new Sealed Report and attached Submittal/Approval Letter must be submitted.

Documentation requirements for Design Exceptions are in FDM 122.4.

122.7.3 Design Variation Approval

Design Variations are typically approved at the District level; however, there are specific elements requiring Central Office approval noted in FDM 122.7.4 (see Table 122.7.1). Design Variations requiring Central Office approval must follow the processes in FDM 122.7.2.

Design Variations approved at the District level may be submitted as either a Formal Design Variation or a Design Variation Memorandum for approval by the District or Turnpike Enterprise Design Engineer.

Documentation requirements for Design Variations (both Formal and Memorandums) are in FDM 122.4.

122.7.4 Signature Requirements

Obtain all required approvals as described in this section. Approvals from multiple individuals may be required for certain issues. The Director of Design must resolve any approval authority issues if conflicting objectives arise. Approval signatures are required by the following Department and FHWA personnel as specified:

Chief Engineer:

(1) Design Exceptions for Design Speed on SIS facilities, following review by the Chief Planner.
(2) Design Variations for Design Speed on SIS facilities, following review by the Chief Planner.
(3) Design Variations for omission of Emergency Shoulder Use (ESU) evacuation requirements for any phase of construction.
(4) Design Variation for Shared Use Paths in LA R/W not meeting the criteria in FDM 224.1.1, following review by the Chief Planner.
(5) Design Exceptions or Variations involving lateral offsets or vertical clearances for railroads not meeting the requirements of Rule 14-57 F.A.C. or the clearance
criteria for the South Florida Rail Corridor (Topic No. 000-725-003 - South Florida Rail Corridor Clearance Policy for 25 KV service).
(6) Design Variations for Non-Standard Use of Shoulders. (e.g., Bus on Shoulder Projects, Part-Time Shoulder Use, Hard Shoulder Running, etc.)
(7) Design Exceptions for Paved Shoulder Width on Interstate and Turnpike Facilities.
(8) Design Variations to not install a Railroad Dynamic Envelope (RDE).

FHWA Division Administrator:

(1) Design Exceptions on Projects of Division Interest (PoDIs).

District (or Turnpike) Design Engineer:

(1) Design Exceptions
(2) Design Variations

State Roadway Design Engineer:

(1) Design Exceptions for elements other than Design Loading Structural Capacity.
(2) Design Variations involving the use of fencing around stormwater management facilities.
(3) Design Exceptions or Variations involving lateral offsets or vertical clearances for railroads not meeting the requirements of Rule 14-57 F.A.C. or the clearance criteria for the South Florida Rail Corridor (Topic No. 000-725-003 - South Florida Rail Corridor Clearance Policy for 25 KV service).

State Structures Design Engineer:

(1) Design Exceptions for Design Loading Structural Capacity of bridges and Vertical Clearance impacting Category 1 and 2 bridge structures.
(2) Design Variations for Design Loading Structural Capacity of bridges and Vertical Clearance impacting Category 2 structures.
(3) Design Variations for Design Loading Structural Capacity due to deficient load ratings impacting both Category 1 and 2 bridge structures.
(4) Design Variations for Traffic Railing impacting Category 1 and 2 bridge structures.
(5) Design Exceptions or Variations involving lateral offsets or vertical clearances for railroads not meeting the requirements of Rule 14-57 F.A.C. or the clearance criteria for the South Florida Rail Corridor (Topic No. 000-725-003 - South Florida Rail Corridor Clearance Policy for 25 KV service).

District (or Turnpike) Structures Design Engineer:

(1) Design Exceptions for Design Loading Structural Capacity of all structural items and Vertical Clearance impacting Category 1 and 2 bridge structures.
(2) Design Variations for Design Loading Structural Capacity of all structural items and Vertical Clearance impacting Category 1 bridge structures.

Table 122.7.1 Central Office Approvals

Design Element	State Roadway Design Engineer	State Structures Design Engineer	Chief Planner	Chief Engineer
	Approval	Approval	Review	Approval
Design Speed Exception	X			
Design Speed Exception-SIS	X		X	X
Design Speed Variation-SIS			X	X
Design Variation: ESU Omission during Construction				X
Design Variation: Shared Use Path in LA R/W			X	X
Design Variation: Non-Standard Shoulder Use				X
Design Variations to not install an RDE				X
Lane Width Exception	X			
Shoulder Width Exception	X			
Paved Shoulder Width Exception (Interstate and Turnpike)	X			X
Maximum Grade Exception	X			
Cross Slope Exception	X			
Superelevation Rate Exception	X			
Horizontal Curve Radius Exception	X			
Stopping Sight Distance Exception	X			
Design Variation: Traffic Railing (Category 1 and 2 Structures)		X		
Design Variation: Fencing on Traffic Railing between pedestrians and travel lanes on LA Facilities		X		
Design Variation: Crossovers on Limited Access Facilities	X			
Design Variation: Patterned Pavement Technical Special Provisions	X			
Design Variation: Use of fencing around stormwater management facilities	X			

Table 122.7.1 Central Office Approvals (Cont.)

Design Element	State Roadway Design Engineer	State Structures Design Engineer	Chief Planner	Chief Engineer
	Approval	Approval	Review	Approval
Design Loading Structural Capacity				
-Design Exception for Bridges		X		
-Design Variation: Category 2 Structures		X		
-Design Variation: Deficient Load Ratings (Category 1 and 2 Structures)		X		
Vertical Clearance Exception				
- Non-Bridge Items	X			
- Bridge Structures (Category 1 and 2)	X	X		
-RR-South Fla Rail Corridor	X	X		X
Vertical Clearance Variation				
-Category 2 Structures		X		
-RR-South Fla Rail Corridor	X	X		X
Lateral Offset Variation				
-Category 1 and 2 Structures	X			
-RR-South Fla Rail Corridor	X	X		X

Worksheet 1B -- Crash Modification Factors for Urban and Suburban Roadway Segments					
(1)	(2)	(3)	(4)	(5)	(6)
CMF for On-Street Parking	CMF for Roadside Fixed Objects	CMF for Median Width	CMF for Lighting	CMF for Automated Speed Enforcement	Combined CMF
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMF 5r	CMF comb
from Equation 12-32	from Equation 12-33	from Table 12-22	from Equation 12-34	from Section 12.7.1	$(1)^{*}(2)^{*}(3)^{*}(4)^{*}(5)$
1.00	1.00	1.00	1.00	1.00	1.00

Worksheet 1C -- Multiple-Vehicle Nondriveway Collisions by Severity Level for Urban and Suburban Roadway Segments									
(1)	(2)		(3)	(4)	(5)	(6)	(7)		(9)
Crash Severity Level	SPF Coefficients		Overdispersion Parameter, k	Initial $\mathrm{N}_{\text {brmv }}$	Proportion of Total Crashes	$\begin{gathered} \hline \text { Adjusted } \\ \mathbf{N}_{\text {brmv }} \\ \hline \end{gathered}$	Combined CMFs	Calibration Factor, $\mathbf{C r}$	$\begin{gathered} \hline \text { Predicted } \\ \mathbf{N}_{\text {brmv }} \\ \hline \end{gathered}$
	from Table 12-3		from Table 12-3	from Equation 12-10		(4) total $^{*}{ }^{\text {(}}$)	(6) from Worksheet 1B		(6)* 7$)^{*}$ (8)
	a	b							(6) (7) ${ }^{\text {(}}$)
Total	-15.22	1.68	0.84	5.707	1.000	5.707	1.00	1.02	5.821
Fatal and Injury (FI)	-16.22	1.66	0.65	1.712	$\frac{(4)_{\mathrm{FI}} /\left((4)_{\mathrm{FI}}+(4)_{\mathrm{PDO}}\right)}{0.288}$	1.642	1.00	1.02	1.675
Property Damage Only (PDO)	-15.62	1.69	0.87	4.237	$\frac{(5)_{\text {TOTAL }}-(5)_{\mathrm{FI}}}{0.712}$	4.065	1.00	1.02	4.146

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(FI)	Predicted \mathbf{N} brmv (FI) (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} brmv (PDO) (crashes/year)	Predicted $\mathbf{N}_{\text {brmv (total }}$ (crashes/year)
	from Table 12-4	(9)fl from Worksheet 1 C	from Table 12-4	(9)poo from Worksheet 1C	(9)total from Worksheet 1C
Total	1.000	1.675	1.000	4.146	5.821
		(2)* $(3)_{\text {F1 }}$		(4)* ${ }^{*}()_{\text {PDo }}$	(3)+(5)
Rear-end collision	0.730	1.223	0.778	3.226	4.449
Head-on collision	0.068	0.114	0.004	0.017	0.131
Angle collision	0.085	0.142	0.079	0.328	0.470
Sideswipe, same direction	0.015	0.025	0.031	0.129	0.154
Sideswipe, opposite direction	0.073	0.122	0.055	0.228	0.350
Other multiple-vehicle collision	0.029	0.049	0.053	0.220	0.268

(1)	(2)		(3)	(4)	(5) Proportion of Total Crashes	(6)Adjusted $\mathbf{N}_{\text {brsv }}$	$\begin{gathered} \hline(7) \\ \hline \begin{array}{c} \text { Combined } \\ \text { CMFs } \end{array} \\ \hline \end{gathered}$		(9) Predicted $\mathbf{N}_{\text {brsv }}$ $(6)^{*}(8)(8)$
	SPF Coefficients		Overdispersion Parameter, \mathbf{k}	Initial $\mathrm{N}_{\text {brsv }}$					
rash Severity Level	from	12-5	from Table 12-5	from Equation 12-13		(4) тотаL $^{*}{ }^{*}(5)$	(6) from Worksheet 1B		$(6)^{*}(7)^{*}(8)$
Total	-5.47	0.56	0.81	1.066	1.000	1.066	1.00	1.02	1.087
Fatal and Injury (FI)	-3.96	0.23	0.50	0.166	$\frac{(4)_{\mathrm{Fl}} /\left((4)_{\mathrm{F}+}(4)_{\mathrm{PDO}}\right)}{0.163}$	0.174	1.00	1.02	0.178
Property Damage Only (PDO)	-6.51	0.64	0.87	0.852	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FI }}}{0.837}$	0.892	1.00	1.02	0.909

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Type(f)	Predicted $\mathbf{N}_{\text {brsv (}}$ (FI) (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} brsv (PDO) (crashes/year)	Predicted $\mathrm{N}_{\text {brss (total) }}$ (crashes/year)
	from Table 12-6	(9)fl from Worksheet 1E	from Table 12-6	(9)poo from Worksheet 1E	(9)total from Worksheet 1E
Total	1.000	0.178	1.000	0.909	1.087
		(2)* ${ }^{*}$) ${ }_{\text {F1 }}$		(4)** ${ }^{*}$ PDo	(3)+(5)
Collision with animal	0.026	0.005	0.066	0.060	0.065
Collision with fixed object	0.723	0.128	0.759	0.690	0.819
Collision with other object	0.010	0.002	0.013	0.012	0.014
Other single-vehicle collision	0.241	0.043	0.162	0.147	0.190

Driveway Type	Number of driveways, \mathbf{n}_{j}	Crashes per driveway per year, N_{j}	Coefficient for traffic adjustment, t	Initial $\mathrm{N}_{\text {brdwy }}$	Overdispersion parameter, k
		from Table 12-7	from Table 12-7	Equation 12-16	from Table 12-7
				$\mathrm{n}_{\mathrm{j}}{ }^{*} \mathrm{~N}_{\mathrm{j}}{ }^{*}(\text { AADT } / 15,000)^{\mathrm{t}}$	
Major commercial	0	0.158	1.000	0.000	--
Minor commercial	0	0.050	1.000	0.000	
Major industrial/institutional	0	0.172	1.000	0.000	
Minor industrial/institutional	0	0.023	1.000	0.000	
Major residential	0	0.083	1.000	0.000	
Minor residential	0	0.016	1.000	0.000	
Other	2	0.025	1.000	0.090	
Total	--	--	--	0.090	0.81

Worksheet 1H -- Multiple-Vehicle Driveway-Related Collisions by Severity Level for Urban and Suburban Roadway Segments						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity	Initial $\mathrm{N}_{\text {brdwy }}$	Proportion of total crashes ($\mathrm{f}_{\mathrm{dwy}}$)	Adjusted $\mathrm{N}_{\text {brdwy }}$	Combined CMFs	Calibration factor, Cr_{r}	Predicted $\mathrm{N}_{\text {brdwy }}$
Crash	(5) Total from Worksheet 1G	from Table 12-7	(2) TOTAL ${ }^{\text {* }}$ (3)	(6) from Worksheet 1B		$(4)^{\star}(5)^{*}(6)$
Total	0.090	1.000	0.090	1.00	1.02	0.092
Fatal and injury (FI)	--	0.323	0.029	1.00	1.02	0.030
Property damage only (PDO)	--	0.677	0.061	1.00	1.02	0.062

Worksheet 1I-- Vehicle-Pedestrian Collisions for Urban and Suburban Roadway Segments							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash Severity Level	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted N_{br}	$\mathrm{f}_{\text {pedr }}$	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {pedr }}$
	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	$(2)+(3)+(4)$	$\begin{gathered} \text { from Table } \\ 12-8 \end{gathered}$		$(5)^{*}(6)^{\star}(7)$
Total	5.821	1.087	0.092	7.000	0.005	1.02	0.035
Fatal and injury (FI)	--	--	--	--	--	1.02	0.035

Worksheet 1J -- Vehicle-Bicycle Collisions for Urban and Suburban Roadway Segments							
Crash Severity Level	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted $\mathrm{N}_{\text {br }}$	$\mathrm{f}_{\text {biker }}$	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {biker }}$
	(9) from Worksheet 1 C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3)+(4)	$\begin{gathered} \hline \text { from Table } \\ 12-9 \\ \hline \end{gathered}$		$(5)^{*}(6)^{*}(7)$
Total	5.821	1.087	0.092	7.000	0.004	1.02	0.028
Fatal and injury (FI)	--	--	--	--	--	1.02	0.028

Worksheet 1K -- Crash Severity Distribution for Urban and Suburban Roadway Segments			
(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 1D and 1F; (7) from Worksheet 1H; and (8) from Worksheet 1 I and 1 J	(5) from Worksheet 1D and 1F; and (7) from Worksheet 1H	(6) from Worksheet 1D and 1F; (7) from Worksheet 1H; and (8) from Worksheet 1 I and 1 J
MULTIPLE-VEHICLE			
Rear-end collisions (from Worksheet 1D)	1.223	3.226	4.449
Head-on collisions (from Worksheet 1D)	0.114	0.017	0.131
Angle collisions (from Worksheet 1D)	0.142	0.328	0.470
Sideswipe, same direction (from Worksheet 1D)	0.025	0.129	0.154
Sideswipe, opposite direction (from Worksheet 1D)	0.122	0.228	0.350
Driveway-related collisions (from Worksheet 1H)	0.030	0.062	0.092
Other multiple-vehicle collision (from Worksheet 1D)	0.049	0.220	0.268
Subtotal	1.705	4.208	5.913
SINGLE-VEHICLE			
Collision with animal (from Worksheet 1F)	0.005	0.060	0.065
Collision with fixed object (from Worksheet 1F)	0.128	0.690	0.819
Collision with other object (from Worksheet 1F)	0.002	0.012	0.014
Other single-vehicle collision (from Worksheet 1F)	0.043	0.147	0.190
Collision with pedestrian (from Worksheet 11)	0.035	0.000	0.035
Collision with bicycle (from Worksheet 1J)	0.028	0.000	0.028
Subtotal	0.241	0.909	1.150
Total	1.946	5.118	7.063

Worksheet 1L -- Summary Results for Urban and Suburban Roadway Segments			
(1)	(2)	(3)	(4)
Crash Severity Level	Predicted average crash frequency, $\mathrm{N}_{\text {predicted rs }}$ (crashes/year)	Roadway segment length, L (mi)	Crash rate (crashes/mi/year)
	(Total) from Worksheet 1K		(2) / (3)
Total	7.1	0.84	8.5
Fatal and injury (FI)	1.9	0.84	2.3
Property damage only (PDO)	5.1	0.84	6.1

Urban/Suburban Arterial - 2 Lane Undivided

> NOTES:
> 1. Present Value $=$ Future Cash Flow $/(1+\text { Required Rate of Return })^{\text {Number of Years You Have To Wat For The Cash Flow }}$
> 2. Traffic Growth Rate $=\left[\left(\left(A D T_{f} / A D T_{i}\right)^{(1 /(-1))}\right)-1\right] \times 100$
> where $A D T_{f}=$ Average Daily Traffic for Future Year

> $$
> \begin{array}{l}A D T_{i}=\text { Average Daily Traffic for Initial Year } \\ \text { I } \\ \text { F Initial Year for ADT } \\ \text { F }\end{array}
>
$$

3. Column E(Site Specific (Npredicted / expected)) is updated based on manually updating AADT within the copy of the spreadsheet and get copy the crash rate for each year here

Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections		
General Information	Location Information	
Analyst Agency or Company AECOM Date Performed $10 / 27 / 22$	Roadway Intersection Jurisdiction Analysis Year	SR 31 Marina Dr and SR 31 Lee County 2025
Input Data	Base Conditions	Site Conditions
Intersection type (3ST, 3SG, 4ST, 4SG)	--	3ST
	--	27,000
$\mathrm{AADT}_{\text {minor }}$ (veh/day) $\mathrm{AADT}_{\text {MAX }}=\quad 9,300$ (veh/day)	--	1,900
Intersection lighting (present/not present)	Not Present	Not Present
Calibration factor, C_{i}	1.00	1.14
Data for unsignalized intersections only:	--	
Number of major-road approaches with left-turn lanes (0,1,2)	0	1
Number of major-road approaches with right-turn lanes (0,1,2)	0	1
Data for signalized intersections only:	--	
Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3]	0	0
Number of approaches with right-turn lanes ($0,1,2,3,4$) [for 3SG, use maximum value of 3]	0	0
Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3]	--	0
Type of left-turn signal phasing for Leg \#1	Permissive	Not Applicable
Type of left-turn signal phasing for Leg \#2	--	Not Applicable
Type of left-turn signal phasing for Leg \#3	--	Not Applicable
Type of left-turn signal phasing for Leg \#4 (if applicable)	--	Not Applicable
Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3]	0	0
Intersection red light cameras (present/not present)	Not Present	Not Present
Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only		
Maximum number of lanes crossed by a pedestrian ($\mathrm{n}_{\text {lanesx }}$)	--	3
Number of bus stops within $300 \mathrm{~m}(1,000 \mathrm{ft}$.) of the intersection	0	0
Schools within 300 m (1,000 ft.) of the intersection (present/not present)	Not Present	Not Present
Number of alcohol sales establishments within 300 m (1,000 ft.) of the intersection	0	0

Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
CMF for Left-Turn Lanes	CMF for Left-Turn Signal Phasing	CMF for Right-Turn Lanes	CMF for Right Turn on Red	CMF for Lighting	CMF for Red Light Cameras	Combined CMF
CMF 1i	CMF 2i	CMF 3i	CMF 4i	CMF $5 i$	CMF 6i	CMF сомв
from Table 12-24	from Table 12-25	from Table 12-26	from Equation 12-35	from Equation 12-36	from Equation 12-37	$(1)^{*}(2)^{*}(3)^{*}(4)^{*}(5)^{*}(6)$
0.67	1.00	0.86	1.00	1.00	1.00	0.58

Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections										
(1)	(2)			(3)	(4)	(5)Proportion of TotalCrashes	(6)	(7)	(8)	(9)
Crash Severity Level	SPF Coefficients			Overdispersion Parameter, k	Initial $\mathrm{N}_{\text {bimv }}$		$\begin{gathered} \text { Adjusted } \\ \mathbf{N}_{\text {bimv }} \end{gathered}$	Combined CMFs	Calibration Factor, C	$\begin{gathered} \hline \text { Predicted } \\ \mathbf{N}_{\text {bimv }} \end{gathered}$
	from Table 12-10			from Table 12-10	$\begin{gathered} \text { from Equation 12- } \\ 21 \\ \hline \end{gathered}$		(4) TOTAL * (5)	(7) from Worksheet 2B		(6)* 7)* ${ }^{(8)}$
	a	b	c							
Total	-13.36	1.11	0.41	0.80	2.890	1.000	2.890	0.58	1.14	1.898
Fatal and Injury (FI)	-14.01	1.16	0.30	0.69	1.095	(4) ${ }_{\text {FI }} /\left((4)_{\text {FIF }}+(4)_{\text {PDO }}\right)$	1.009	0.58	1.14	0.663
						0.349				
Property Damage Only (PDO)	-15.38	1.20	0.51	0.77	2.043	(5) TOTAL $^{-(5)_{\text {FI }}}$	1.882	0.58	1.14	1.236
						0.651				

Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections					
(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(f)	Predicted \mathbf{N} bimv (FI) (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} bimv (PDo) (crashes/year)	Predicted $\mathbf{N}_{\text {bimv (total }}$ (crashes/year)
	from Table 12-11	(9)FI from Worksheet 2C	from Table 12-11	(9)ppo from Worksheet 2C	(9)pdo from Worksheet 2C
Total	1.000	0.663	1.000	1.236	1.898
		(2)* 3$)_{\text {Fl }}$		(4)* 5$)_{\text {PDO }}$	(3)+(5)
Rear-end collision	0.421	0.279	0.440	0.544	0.823
Head-on collision	0.045	0.030	0.023	0.028	0.058
Angle collision	0.343	0.227	0.262	0.324	0.551
Sideswipe	0.126	0.083	0.040	0.049	0.133
Other multiple-vehicle collision	0.065	0.043	0.235	0.290	0.334

Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections										
(1)	(2)			(3)	(4)	(5)Proportion of TotalCrashes	(6) Adjusted $\mathbf{N}_{\text {bimv }}$ $(4)_{\text {TOTAL }}{ }^{*}(5)$	(7) Combined CMFs (7) from Worksheet 2B	$\begin{array}{\|c\|} \hline(8) \\ \hline \text { Calibration } \\ \text { Factor, } \boldsymbol{C}_{\mathbf{i}} \\ \hline \end{array}$	$\begin{gathered} \hline \text { (9) } \\ \hline \text { Predicted } \\ \mathbf{N}_{\text {bisv }} \end{gathered}$
Crash Severity Level	SPF Coefficients			Overdispersion Parameter, k	Initial $\mathrm{N}_{\text {bisv }}$					
	from Table 12-12			from Table 12-12	from Eqn. 12-24; (FI) from Eqn. 12- 24 or 12-27					$(6)^{*}(7)^{\star}(8)$
	a	b	c				(4) ${ }_{\text {total }}(5)$			
Total	-6.81	0.16	0.51	1.14	0.265	1.000	0.265	0.58	1.14	0.174
Fatal and Injury (FI)	--	--	--	--	0.082	$\frac{(4)_{\mathrm{FI}} /\left((4)_{\mathrm{F} \cdot}+(4)_{\mathrm{PDO}}\right)}{0.301}$	0.080	0.58	1.14	0.052
Property Damage Only (PDO)	-8.36	0.25	0.55	1.29	0.191	$\begin{gathered} (5)_{\text {TOTAL }}-(5)_{\text {FI }} \\ 0.699 \end{gathered}$	0.185	0.58	1.14	0.122

Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections					
(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(FI)	Predicted \mathbf{N} bisv (FI) (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} bisv (PDo) (crashes/year)	Predicted $\mathbf{N}_{\text {bisv (total }}$ (crashes/year)
	from Table 12-13	(9)fl from Worksheet 2E	from Table 12-13	(9)poo from Worksheet 2E	(9)poo from Worksheet 2E
Total	1.000	0.052	1.000	0.122	0.174
		(2)* ${ }^{\text {(3) }}$ F1		(4)**(5) ${ }_{\text {PDo }}$	(3)+(5)
Collision with parked vehicle	0.001	0.000	0.003	0.000	0.000
Collision with animal	0.003	0.000	0.018	0.002	0.002
Collision with fixed object	0.762	0.040	0.834	0.102	0.142
Collision with other object	0.090	0.005	0.092	0.011	0.016
Other single-vehicle collision	0.039	0.002	0.023	0.003	0.005
Single-vehicle noncollision	0.105	0.006	0.030	0.004	0.009

Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity Level	Predicted $\mathrm{N}_{\text {bimv }}$	Predicted $\mathrm{N}_{\text {bisv }}$	Predicted N_{bi}	$\mathrm{f}_{\text {pedi }}$	Calibration factor, $\mathrm{C}_{\mathbf{i}}$	Predicted $\mathrm{N}_{\text {pedi }}$
	(9) from Worksheet 2 C	(9) from Worksheet 2E	(2) + (3)	from Table 12-16		$(4)^{*}(5)^{*}(6)$
Total	1.898	0.174	2.073	0.021	1.14	0.050
Fatal and injury (FI)	--	--	--	--	1.14	0.050

(1)	(2)	(3)	(4)
CMF for Bus Stops	CMF for Schools	CMF for Alcohol Sales Establishments	Combined CMF
$\mathrm{CMF}_{1 \mathrm{p}}$	$\mathrm{CMF}_{2 \mathrm{p}}$	$\mathrm{CMF}_{3 \mathrm{p}}$	
from Table 12-28	from Table 12-29	from Table 12-30	$(1) *(2) *$ (3)
--	--	--	--

Worksheet 21-- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Signalized Intersections										
(1)	(2)					(3)	(4)	(5)	(6)	(7)
Crash Severity Level	SPF Coefficients					Overdispersion Parameter, k	$\mathbf{N}_{\text {pedbase }}$	Combined CMF	Calibration factor, C_{i}	Predicted $\mathbf{N}_{\text {pedi }}$
	from Table 12-14						from Equation 12-29	(4) from Worksheet 2H		$(4)^{*}(5)^{*}(6)$
	a	b	c	d	e					
Total	--	--	--	--	--	--	--	--	1.14	1.140
Fatal and Injury (FI)	--	--	--	--	--	--	--	--	1.14	1.140

Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity Level	Predicted $\mathrm{N}_{\text {bimv }}$	Predicted $\mathrm{N}_{\text {bisv }}$	Predicted N_{bi}	$\mathrm{f}_{\text {bikei }}$	Calibration factor, C_{i}	Predicted $\mathrm{N}_{\text {bikei }}$
	(9) from Worksheet 2C	(9) from Worksheet 2E	(2) $+(3)$	from Table 12-17		$(4)^{\star}(5){ }^{\star}(6)$
Total	1.898	0.174	2.073	0.016	1.14	0.033
Fatal and injury (FI)	--	--	--	--	1.14	0.033

Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections			
(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 2D and 2F; (7) from 2G or 2 I and 2 J	(5) from Worksheet 2D and 2F	(6) from Worksheet 2D and 2F; (7) from 2G or 2 I and 2 J
MULTIPLE-VEHICLE			
Rear-end collisions (from Worksheet 2D)	0.279	0.544	0.823
Head-on collisions (from Worksheet 2D)	0.030	0.028	0.058
Angle collisions (from Worksheet 2D)	0.227	0.324	0.551
Sideswipe (from Worksheet 2D)	0.083	0.049	0.133
Other multiple-vehicle collision (from Worksheet 2D)	0.043	0.290	0.334
Subtotal	0.663	1.236	1.898
SINGLE-VEHICLE			
Collision with parked vehicle (from Worksheet 2F)	0.000	0.000	0.000
Collision with animal (from Worksheet 2F)	0.000	0.002	0.002
Collision with fixed object (from Worksheet 2F)	0.040	0.102	0.142
Collision with other object (from Worksheet 2F)	0.005	0.011	0.016
Other single-vehicle collision (from Worksheet 2F)	0.002	0.003	0.005
Single-vehicle noncollision (from Worksheet 2F)	0.006	0.004	0.009
Collision with pedestrian (from Worksheet 2G or 2I)	0.050	0.000	0.050
Collision with bicycle (from Worksheet 2J)	0.033	0.000	0.033
Subtotal	0.135	0.122	0.257
Total	0.798	1.358	2.156

Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections	
(1)	(2)
Crash severity level	Predicted average crash frequency, $\mathrm{N}_{\text {predicted int }}$

Present Worth Analysis

Urban/Suburban Arterial - Unsignalised 3 Leg Intersection
No-Build Alternative

General Information					Site Information				
Analyst:		$\begin{array}{r} \text { Date: } \\ \text { AECOM } \end{array}$	10/27/2022		Location ID: \qquad City:	arina Dr and SR 31	County: Lee County		
Agency or Company:						Fort Mayers	M.P. - M.P.		
Manual Input from Analysis									
Major Growth Rate =	3.9\%	Current Year =	2025 roject Opening Year =	2025	Default Distribution for	rash Severity	0-2014 Florida H	Crash Di	bution)
Minor Growth Rate =	1.0\%	Rate of Return =	4.0\% Analysis Period =	21	Fatality =	0.9\%	Poss	Injury =	22.4\%
Current Year Major AADT $=$	27,000	Intersection Type $=$	3ST		Incapacitating =	5.0\%	Property Da	Only =	56.7\%
Current Year Minor AADT =	1,900	Intersection = Crash Data Used =	Intersection1 No	Analyze	Non-Incapacitating =	15.0\%	Segment Type $=$	2 U	100.0\%

				Annual Number of Crashes						Annual Cost						
	Year	AADT	AADT		Fatality	Incap.	Non-Inc.	Possible Injury	PDO	Fatality	Incap.	Non-Inc.	Possible Injury	PDO	Total Cost	Present Value
1	2025	27,000	1,900	2.2	0.019	0.108	0.324	0.484	1.225	\$211,732	\$95,921	\$58,387	\$50,302	\$9,432	\$425,774	\$409,398
2	2026	28,053	1,919	2.3	0.020	0.113	0.338	0.505	1.279	\$221,159	\$100,192	\$60,986	\$52,542	\$9,852	\$444,731	\$411,178
3	2027	29,147	1,938	2.4	0.021	0.118	0.354	0.528	1.337	\$231,028	\$104,663	\$63,708	\$54,887	\$10,291	\$464,576	\$413,006
4	2028	30,284	1,958	2.5	0.022	0.123	0.369	0.552	1.396	\$241,359	\$109,343	\$66,557	\$57,341	\$10,751	\$485,351	\$414,880
5	2029	31,465	1,977	2.6	0.023	0.129	0.386	0.576	1.459	\$252,175	\$114,243	\$69,539	\$59,911	\$11,233	\$507,102	\$416,801
6	2030	32,692	1,997	2.7	0.024	0.134	0.403	0.602	1.524	\$263,499	\$119,373	\$72,662	\$62,601	\$11,738	\$529,873	\$418,766
7	2031	33,967	2,017	2.8	0.025	0.140	0.421	0.629	1.593	\$275,355	\$124,744	\$75,931	\$65,418	\$12,266	\$553,713	\$420,776
8	2032	35,292	2,037	2.9	0.026	0.147	0.440	0.658	1.665	\$287,767	\$130,367	\$79,354	\$68,366	\$12,819	\$578,674	\$422,831
9	2033	36,668	2,057	3.1	0.028	0.153	0.460	0.687	1.740	\$300,763	\$136,255	\$82,938	\$71,454	\$13,398	\$604,807	\$424,930
10	2034	38,098	2,078	3.2	0.029	0.160	0.481	0.718	1.819	\$314,370	\$142,419	\$86,690	\$74,687	\$14,004	\$632,170	\$427,071
11	2035	39,584	2,099	3.4	0.030	0.168	0.503	0.751	1.901	\$328,618	\$148,874	\$90,619	\$78,072	\$14,638	\$660,820	\$429,256
12	2036	41,128	2,120	3.5	0.032	0.175	0.526	0.785	1.987	\$343,536	\$155,632	\$94,733	\$81,616	\$15,303	\$690,819	\$431,483
13	2037	42,732	2,141	3.7	0.033	0.183	0.550	0.821	2.078	\$359,156	\$162,709	\$99,040	\$85,327	\$15,999	\$722,230	\$433,753
14	2038	44,398	2,162	3.8	0.034	0.192	0.575	0.858	2.172	\$375,512	\$170,118	\$103,550	\$89,213	\$16,727	\$755,121	\$436,064
15	2039	46,130	2,184	4.0	0.036	0.200	0.601	0.897	2.271	\$392,639	\$177,878	\$108,273	\$93,282	\$17,490	\$789,562	\$438,416
16	2040	47,929	2,206	4.2	0.038	0.209	0.628	0.938	2.375	\$410,574	\$186,002	\$113,219	\$97,542	\$18,289	\$825,627	\$440,809
17	2041	49,798	2,228	4.4	0.039	0.219	0.657	0.981	2.484	\$429,354	\$194,510	\$118,398	\$102,004	\$19,126	\$863,392	\$443,243
18	2042	51,740	2,250	4.6	0.041	0.229	0.687	1.026	2.598	\$449,021	\$203,420	\$123,821	\$106,676	\$20,002	\$902,940	\$445,716
19	2043	53,758	2,273	4.8	0.043	0.240	0.719	1.073	2.717	\$469,615	\$212,750	\$129,500	\$111,569	\$20,919	\$944,353	\$448,230
20	2044	55,855	2,295	5.0	0.045	0.251	0.752	1.123	2.842	\$491,182	\$222,520	\$135,447	\$116,693	\$21,880	\$987,722	\$450,783
21	2045	58,033	2,318	5.2	0.047	0.262	0.786	1.174	2.972	\$513,767	\$232,752	\$141,675	\$122,059	\$22,886	\$1,033,139	\$453,376
	2046	60,296	2,342		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2047	62,648	2,365		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2048	65,091	2,389		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2049	67,630	2,412		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2050	70,267	2,437		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2051	73,008	2,461		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0

NOTES:

1. Present Value $=$ Future Cash Flow $/(1+\text { Required Rate of Return })^{\text {Number of Years You Have To Watit For The Cash Flow }}$
2. Traffic Growth Rate $=\left[\left(\left(A D T_{f} / A D T_{i}\right)^{(1 /(F-1))}\right)-1\right] \times 100$
where $A D T_{f}=$ Average Daily Traffic for Future Year
$A D T_{i}=$ Average Daily Traffic for Initial Year
I = Initial Year for ADT
$I=$ Initial Year for ADT
F F Future Year for ADT
3. Column F(Site Specific (Npredicted / expected)) is updated based on manually updating AADT within the copy of the spreadsheet and get copy the crash rate for each year here

Worksheet 1A -- General Information and Input Data for Urban and Suburban Roadway Segments

Worksheet 1B -- Crash Modification Factors for Urban and Suburban Roadway Segments					
(1)	(2)	(3)	(4)	(5)	(6)
CMF for On-Street Parking	CMF for Roadside Fixed Objects	CMF for Median Width	CMF for Lighting	CMF for Automated Speed Enforcement	Combined CMF
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMF 5r	CMF comb
from Equation 12-32	from Equation 12-33	from Table 12-22	from Equation 12-34	from Section 12.7.1	$(1)^{*}(2)^{*}(3)^{*}(4)^{*}(5)$
1.00	1.00	0.99	0.91	1.00	0.90

Worksheet 1C -- Multiple-Vehicle Nondriveway Collisions by Severity Level for Urban and Suburban Roadway Segments									
(1)	(2)		(3)	(4)	(5)Proportion of Total Crashes	(6)	(7)	(8)	(9) Predicted $\mathbf{N}_{\text {brmv }}$
Crash Severity Level	SPF Coefficients		Overdispersion Parameter, \mathbf{k}	Initial $\mathrm{N}_{\text {brmv }}$		$\begin{gathered} \hline \text { Adjusted } \\ \mathbf{N}_{\text {brmv }} \\ \hline \end{gathered}$	$\begin{gathered} \text { Combined } \\ \text { CMFs } \end{gathered}$	Calibration Factor, Cr	
	from Table 12-3		from Table 12-3	from Equation 12-10		(4) TOTAL * (5)	(6) from Worksheet 1B		$(6)^{*}(7){ }^{*}(8)$
	a	b							(6) ${ }^{(7)}$ (8)
Total	-12.34	1.36	1.32	2.529	1.000	2.529	0.90	1.63	3.730
Fatal and Injury (FI)	-12.76	1.28	1.31	0.753	$\frac{(4)_{\mathrm{FI}} /\left((4)_{\mathrm{FI}}+(4)_{\mathrm{PDO}}\right)}{0.281}$	0.711	0.90	1.63	1.049
Property Damage Only (PDO)	-12.81	1.38	1.34	1.926	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FI }}}{0.719}$	1.818	0.90	1.63	2.681

$\begin{gathered} \hline \frac{(1)}{\text { Collision Type }} \end{gathered}$	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Type(f)	Predicted $\mathbf{N}_{\text {brmv (}}$ (F) (crashes/year)	Proportion of Collision Type (PDO)	Predicted $\mathbf{N}_{\text {brmu (}}$ (PDO) (crashes/year)	Predicted $\mathbf{N}_{\text {brmv (total) }}$ (crashes/year)
	from Table 12-4	(9)FIf from Worksheet 1C	from Table 12-4	(9)poo from Worksheet 1 C	(9)total from Worksheet 1C
Total	1.000	1.049	1.000	2.681	3.730
		(2)* $\left.{ }^{*}\right)_{\text {F1 }}$		(4)** 5$)_{\text {PDO }}$	(3)+(5)
Rear-end collision	0.832	0.872	0.662	1.775	2.647
Head-on collision	0.020	0.021	0.007	0.019	0.040
Angle collision	0.040	0.042	0.036	0.097	0.138
Sideswipe, same direction	0.050	0.052	0.223	0.598	0.650
Sideswipe, opposite direction	0.010	0.010	0.001	0.003	0.013
Other multiple-vehicle collision	0.048	0.050	0.071	0.190	0.241

Worksheet 1E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Roadway Segments									
(1)	(2)		(3)	(4)	(5)Proportion of Total Crashes	(6) Adjusted $\mathbf{N}_{\text {brsv }}$	(7) Combined CMFs (6) mra	(8) Calibration Factor, Cr	$\frac{(9)}{\text { Predicted }}$
Crash Severity Level	SPF Coefficients		Overdispersion Parameter, \mathbf{k}	Initial $\mathrm{N}_{\text {brsv }}$					
Crash Severity Level	from	12-5	from Table 12-5	from Equation 12-13		(4) total * (5)	(6) from Worksheet 1 B		$(6)^{*}(7)^{*}(8)$
Total	-5.05	0.47	0.86	0.558	1.000	0.558	0.90	1.63	0.823
Fatal and Injury (FI)	-8.71	0.66	0.28	0.094	$\frac{\left.(4)_{\mathrm{F} /} /(4)_{\mathrm{F}}+(4)_{\mathrm{PDO}}\right)}{0.169}$	0.094	0.90	1.63	0.139
Property Damage Only (PDO)	-5.04	0.45	1.06	0.463	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FI }}}{0.831}$	0.464	0.90	1.63	0.684

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Type(F)	Predicted \mathbf{N} brsv (FI) (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} brsv (PDO) (crashes/year)	Predicted $\mathrm{N}_{\text {brss (total }}$ (crashes/year)
	from Table 12-6	(9) FI from Worksheet 1E	from Table 12-6	(9)poo from Worksheet 1E	(9)total from Worksheet 1E
Total	1.000	0.139	1.000	0.684	0.823
		(2)* $(3)_{\text {F1 }}$		(4)* ${ }^{*}$ (5poo	(3)+(5)
Collision with animal	0.001	0.000	0.063	0.043	0.043
Collision with fixed object	0.500	0.070	0.813	0.556	0.626
Collision with other object	0.028	0.004	0.016	0.011	0.015
Other single-vehicle collision	0.471	0.066	0.108	0.074	0.139

(1)	(2)	(3) (4)		(5)	(6)
	Number of driveways, n_{j}	Crashes per driveway per year, N_{j}	Coefficient for traffic adjustment, t	Initial $\mathrm{N}_{\text {brdwy }}$	Overdispersion parameter, k
Driveway Type		from Table 12-7	from Table 12-7	Equation 12-16	from Table 12-7
				$\mathrm{n}_{\mathrm{j}}{ }^{*} \mathrm{~N}_{\mathrm{j}}{ }^{*}(\text { AADT } / 15,000)^{\text {t }}$	
Major commercial	0	0.033	1.106	0.000	--
Minor commercial	0	0.011	1.106	0.000	
Major industrial/institutional	0	0.036	1.106	0.000	
Minor industrial/institutional	0	0.005	1.106	0.000	
Major residential	0	0.018	1.106	0.000	
Minor residential	4	0.003	1.106	0.016	
Other	0	0.005	1.106	0.000	
Total	--	--	--	0.016	1.39

Worksheet 1H -- Multiple-Vehicle Driveway-Related Collisions by Severity Level for Urban and Suburban Roadway Segments					(6)	(7)
	Initial $\mathrm{N}_{\text {brdwy }}$	Proportion of total crashes ($\mathrm{f}_{\mathrm{dwy}}$)	Adjusted $\mathrm{N}_{\text {brdwy }}$	Combined CMFs	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {brdwy }}$
Crash Severity Level	(5) Total from Worksheet 1 G	from Table 12-7	(2) ${ }_{\text {total }}$ * (3)	(6) from Worksheet 1B		$(4)^{*}(5)^{\star}(6)$
Total	0.016	1.000	0.016	0.90	1.63	0.024
Fatal and injury (FI)	--	0.284	0.005	0.90	1.63	0.007
Property damage only (PDO)	--	0.716	0.012	0.90	1.63	0.017

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash Severity Level	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted N_{br}	$\mathrm{f}_{\text {pear }}$	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {pedr }}$
	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1 1 H	(2)+(3)+(4)	$\begin{gathered} \text { from Table } \\ 12-8 \end{gathered}$		$(5)^{*}(6)^{\star}(7)$
Total	3.730	0.823	0.024	4.577	0.019	1.63	0.087
Fatal and injury (FI)	--	--	--	--	--	1.63	0.087

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted $\mathrm{N}_{\text {br }}$	$\mathrm{f}_{\text {biker }}$		Predicted $\mathrm{N}_{\text {biker }}$
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1 1 H	$(2)+(3)+(4)$	$\begin{gathered} \text { from Table } \\ 12-9 \end{gathered}$	factor, C_{r}	$(5)^{*}(6)^{*}(7)$
Total	3.730	0.823	0.024	4.577	0.005	1.63	0.023
Fatal and injury (FI)	--	--	--	--	--	1.63	0.023

Worksheet 1K -- Crash Severity Distribution for Urban and Suburban Roadway Segments			
(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 1D and 1F; (7) from Worksheet 1H; and (8) from Worksheet 1 I and 1 J	(5) from Worksheet 1D and 1F; and (7) from Worksheet 1H	(6) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 1 I and 1 J
MULTIPLE-VEHICLE			
Rear-end collisions (from Worksheet 1D)	0.872	1.775	2.647
Head-on collisions (from Worksheet 1D)	0.021	0.019	0.040
Angle collisions (from Worksheet 1D)	0.042	0.097	0.138
Sideswipe, same direction (from Worksheet 1D)	0.052	0.598	0.650
Sideswipe, opposite direction (from Worksheet 1D)	0.010	0.003	0.013
Driveway-related collisions (from Worksheet 1H)	0.007	0.017	0.024
Other multiple-vehicle collision (from Worksheet 1D)	0.050	0.190	0.241
Subtotal	1.055	2.698	3.754
SINGLE-VEHICLE			
Collision with animal (from Worksheet 1F)	0.000	0.043	0.043
Collision with fixed object (from Worksheet 1F)	0.070	0.556	0.626
Collision with other object (from Worksheet 1F)	0.004	0.011	0.015
Other single-vehicle collision (from Worksheet 1F)	0.066	0.074	0.139
Collision with pedestrian (from Worksheet 1I)	0.087	0.000	0.087
Collision with bicycle (from Worksheet 1 J)	0.023	0.000	0.023
Subtotal	0.249	0.684	0.933
Total	1.304	3.383	4.687

Worksheet 1L -- Summary Results for Urban and Suburban Roadway Segments			
(1)			
Crash Severity Level	(2)	(3)	(4)

Urban/Suburban Arterial - 4 Lane Divided
Build Alternative

General Information						Site Information					
Analyst:		Date:	10/27/2022			Location ID: City	SR 31 LJ's Lounge Driveway to south of SR 78		County:_ Lee County		
Agency or Company: AECOM									M.P. - M.P.		
Manual Input from Analysis											
Growth Rate =	3.6\%		Current Year =	2025	Project Opening Year =	2025	Default D	bution for	S Se	014 Florida HSM Crash Dis	bution)
Current Year AADT $=$	19,700	Rate of Return =	4.0\%	Analysis Period =	21		Fatality $=$	0.8\%	Possible Injury =	23.4\%	
Segment Length $=$	0.835	Segment Type $=$	4D		Analyze		acitating =	4.6\%	Property Damage Only =	57.1\%	
Crash Data Used =	No	Segment $=$	Segment1			Non-In	acitating =	14.2\%		100.1\%	

	Year	AADT	Annual Number of Crashes						Annual Cost						
			Site Specific ($\mathrm{N}_{\text {predicted } / \text { expected }}$)	Fatality	Incap.	Non-Inc.	Possible Injury	PDO	Fatality	Incap.	Non-Inc.	Possible Injury	PDO	Total Cost	Present Value
1	2025	19,700	4.7	0.037	0.216	0.666	1.097	2.676	\$408,325	\$191,458	\$119,918	\$114,006	\$20,607	\$854,315	\$821,456
2	2026	20,411	4.9	0.039	0.225	0.694	1.144	2.793	\$426,087	\$199,786	\$125,134	\$118,965	\$21,503	\$891,476	\$824,219
3	2027	21,148	5.1	0.041	0.235	0.725	1.194	2.915	\$444,685	\$208,507	\$130,596	\$124,158	\$22,442	\$930,387	\$827,110
4	2028	21,911	5.3	0.043	0.245	0.757	1.247	3.042	\$464,160	\$217,638	\$136,315	\$129,595	\$23,425	\$971,133	\$830,129
5	2029	22,702	5.6	0.044	0.256	0.790	1.301	3.176	\$484,555	\$227,201	\$142,305	\$135,290	\$24,454	\$1,013,804	\$833,273
6	2030	23,522	5.8	0.046	0.267	0.825	1.359	3.316	\$505,914	\$237,216	\$148,578	\$141,253	\$25,532	\$1,058,493	\$836,543
7	2031	24,371	6.1	0.049	0.279	0.861	1.419	3.462	\$528,285	\$247,706	\$155,148	\$147,500	\$26,661	\$1,105,299	\$839,936
8	2032	25,251	6.3	0.051	0.291	0.899	1.482	3.616	\$551,716	\$258,692	\$162,029	\$154,042	\$27,844	\$1,154,323	\$843,453
9	2033	26,163	6.6	0.053	0.304	0.939	1.548	3.777	\$576,260	\$270,201	\$169,237	\$160,894	\$29,082	\$1,205,675	\$847,091
10	2034	27,107	6.9	0.055	0.318	0.981	1.617	3.945	\$601,971	\$282,256	\$176,788	\$168,073	\$30,380	\$1,259,467	\$850,851
11	2035	28,086	7.2	0.058	0.332	1.025	1.689	4.122	\$628,904	\$294,885	\$184,698	\$175,593	\$31,739	\$1,315,819	\$854,731
12	2036	29,099	7.5	0.060	0.347	1.071	1.765	4.307	\$657,121	\$308,115	\$192,984	\$183,471	\$33,163	\$1,374,855	\$858,730
13	2037	30,150	7.9	0.063	0.363	1.119	1.844	4.501	\$686,683	\$321,976	\$201,666	\$191,725	\$34,655	\$1,436,706	\$862,848
14	2038	31,238	8.2	0.066	0.379	1.170	1.928	4.704	\$717,656	\$336,499	\$210,763	\$200,373	\$36,218	\$1,501,509	\$867,084
15	2039	32,366	8.6	0.069	0.396	1.223	2.015	4.916	\$750,110	\$351,716	\$220,294	\$209,434	\$37,856	\$1,569,409	\$871,437
16	2040	33,534	9.0	0.072	0.414	1.278	2.106	5.139	\$784,115	\$367,661	\$230,280	\$218,929	\$39,572	\$1,640,557	\$875,907
17	2041	34,745	9.4	0.075	0.433	1.336	2.202	5.373	\$819,749	\$384,369	\$240,745	\$228,878	\$41,370	\$1,715,111	\$880,492
18	2042	35,999	9.8	0.079	0.453	1.397	2.302	5.618	\$857,090	\$401,878	\$251,712	\$239,303	\$43,255	\$1,793,238	\$885,193
19	2043	37,299	10.3	0.082	0.473	1.461	2.407	5.874	\$896,222	\$420,226	\$263,204	\$250,229	\$45,230	\$1,875,112	\$890,008
20	2044	38,645	10.8	0.086	0.495	1.528	2.517	6.143	\$937,233	\$439,456	\$275,248	\$261,680	\$47,300	\$1,960,917	\$894,937
21	2045	40,041	11.3	0.090	0.518	1.598	2.633	6.425	\$980,215	\$459,609	\$287,871	\$273,680	\$49,469	\$2,050,844	\$899,979
	2046	41,486		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2047	42,984		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2048	44,535		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2049	46,143		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2050	47,809		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2051	49,535		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0

NOTES:

1. Present Value $=$ Future Cash Flow $/(1+\text { Required Rate of Return })^{\text {Number of Years You Have To Wait For The Cash Flow }}$
2. Traffic Growth Rate $=\left[\left(\left(\mathrm{ADT}_{f} / A D T_{i}\right)^{(1 /(F-1)}\right)-1\right] \times 100$
where $A D T_{f}=$ Average Daily Traffic for Future Year
$A D T_{i}=$ Average Daily Traffic for Initial Year
I = Initial Year for ADT
F = Future Year for ADT
3. Column E (Site Specific (Npredicted / expected)) is updated based on manually updating AADT within the copy of the spreadsheet and get copy the crash rate for each year here

Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections		
General Information	Location Information	
Analyst Agency or Company AECOM Date Performed $10 / 27 / 22$	Roadway Intersection Jurisdiction Analysis Year	SR 31 Marina Dr and SR 31 Lee County 2025
Input Data	Base Conditions	Site Conditions
Intersection type (3ST, 3SG, 4ST, 4SG)	--	4SG
$\mathrm{AADT}_{\text {major }}$ (veh/day) ${ }^{\text {a }}$ ($\mathrm{AADT}_{\text {MAX }}=667,700$ (veh/day)	--	19,700
$\mathrm{AADT}_{\text {minor }}$ (veh/day) $\mathrm{AADT}_{\text {MAX }}=333,400$ (veh/day)	--	1,900
Intersection lighting (present/not present)	Not Present	Present
Calibration factor, C_{i}	1.00	2.27
Data for unsignalized intersections only:	--	
Number of major-road approaches with left-turn lanes (0,1,2)	0	0
Number of major-road approaches with right-turn lanes (0,1,2)	0	0
Data for signalized intersections only:	--	
Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3]	0	2
Number of approaches with right-turn lanes ($0,1,2,3,4$) [for 3SG, use maximum value of 3]	0	0
Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3]	--	2
Type of left-turn signal phasing for Leg \#1	Permissive	Protected
Type of left-turn signal phasing for Leg \#2	--	Protected
Type of left-turn signal phasing for Leg \#3	--	Protected / Permissive
Type of left-turn signal phasing for Leg \#4 (if applicable)	--	Protected / Permissive
Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3]	0	0
Intersection red light cameras (present/not present)	Not Present	Not Present
Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only		10
Maximum number of lanes crossed by a pedestrian ($\mathrm{l}_{\text {lanesx }}$)	--	7
Number of bus stops within 300 m ($1,000 \mathrm{ft}$.) of the intersection	0	0
Schools within 300 m (1,000 ft.) of the intersection (present/not present)	Not Present	Not Present
Number of alcohol sales establishments within 300 m (1,000 ft.) of the intersection	0	0

Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
CMF for Left-Turn Lanes	CMF for Left-Turn Signal Phasing	CMF for Right-Turn Lanes	CMF for Right Turn on Red	CMF for Lighting	CMF for Red Light Cameras	Combined CMF
CMF 1i	CMF 2i	CMF 3i	CMF 4i	CMF 5i	CMF 6i	CMF сомв
from Table 12-24	from Table 12-25	from Table 12-26	from Equation 12-35	from Equation 12-36	from Equation 12-37	$(1)^{*}(2)^{*}(3)^{*}(4)^{*}(5)^{*}(6)$
0.81	0.87	1.00	1.00	0.91	1.00	0.65

Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections										
(1)	(2)			(3)	(4)	(5)Proportion of TotalCrashes	(6)	(7)	(8)	(9)
Crash Severity Level	SPF Coefficients			Overdispersion Parameter, k			$\begin{gathered} \hline \text { Adjusted } \\ \mathbf{N}_{\text {bimv }} \end{gathered}$	$\begin{gathered} \text { Combined } \\ \text { CMFs } \end{gathered}$	Calibration Factor, C_{i}	$\begin{gathered} \hline \text { Predicted } \\ \mathbf{N}_{\text {bimv }} \\ \hline \end{gathered}$
	from Table 12-10			from Table 12-10	from Equation 1221		(4) TOTAL ${ }^{*}$ (5)	(7) from		$(6)^{*}(7)^{*}(8)$
	a	b	c				(4) Total ${ }^{\text {(}}$)	Worksheet 2B		(6) ${ }^{(7)}$ (8)
Total	-10.99	1.07	0.23	0.39	3.770	1.000	3.770	0.65	2.27	5.522
Fatal and Injury (FI)	-13.14	1.18	0.22	0.33	1.208	$\frac{(4)_{\text {Fl }} /\left((4)_{\text {FI }}+(4)_{\text {PDO }}\right)}{0.334}$	1.260	0.65	2.27	1.846
Property Damage Only (PDO)	-11.02	1.02	0.24	0.44	2.406	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FI }}}{0.666}$	2.509	0.65	2.27	3.676

Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections					
(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(FI)	Predicted \mathbf{N} bimv (FI) (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} bimv (PDo) (crashes/year)	Predicted $\mathbf{N}_{\text {bimv (total) }}$ (crashes/year)
	from Table 12-11	(9)Fl from Worksheet 2C	from Table 12-11	(9)pDo from Worksheet 2C	(9)pdo from Worksheet 2C
Total	1.000	1.846	1.000	3.676	5.522
		$(2) *$ (3) ${ }_{\text {FI }}$		(4)* 5$)_{\text {PDO }}$	(3)+(5)
Rear-end collision	0.450	0.831	0.483	1.775	2.606
Head-on collision	0.049	0.090	0.030	0.110	0.201
Angle collision	0.347	0.641	0.244	0.897	1.537
Sideswipe	0.099	0.183	0.032	0.118	0.300
Other multiple-vehicle collision	0.055	0.102	0.211	0.776	0.877

Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections										
(1)	(2)			(3)	(4)	(5)	(6)	(7)	(8)CalibrationFactor, C_{i}	(9)
Crash Severity Level	SPF Coefficients			Overdispersion Parameter, k	Initial $\mathbf{N}_{\text {bisv }}$	Proportion of Total Crashes	$\begin{gathered} \hline \text { Adjusted } \\ \mathbf{N}_{\text {bimv }} \end{gathered}$	$\begin{gathered} \text { Combined } \\ \text { CMFs } \end{gathered}$		$\begin{gathered} \text { Predicted } \\ \mathbf{N}_{\text {bisv }} \end{gathered}$
	from Table 12-12			from Table 12-12	from Eqn. 12-24; (FI) from Eqn. 1224 or 12-27		(4) TOTAL ${ }^{*}(5)$	(7) from Worksheet 2B		$(6)^{*}(7)^{*}(8)$
	a	b	c							
Total	-10.21	0.68	0.27	0.36	0.235	1.000	0.235	0.65	2.27	0.344
Fatal and Injury (FI)	-9.25	0.43	0.29	0.09	0.060	$\frac{(4)_{\mathrm{FI}} /\left((4)_{\mathrm{FI}}+(4)_{\mathrm{PDO}}\right)}{0.256}$	0.060	0.65	2.27	0.088
Property Damage Only (PDO)	-11.34	0.78	0.25	0.44	0.176	$\frac{(5)_{\text {TOTAL }}-(5)_{\mathrm{FI}}}{0.744}$	0.175	0.65	2.27	0.256

Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections					
(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(FI)	Predicted \mathbf{N} bisv (FI) (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} bisv (PDo) (crashes/year)	Predicted $\mathbf{N}_{\text {bisv (total }}$ (crashes/year)
	from Table 12-13	(9)Fl from Worksheet 2E	from Table 12-13	(9)pdo from Worksheet 2E	(9)pdo from Worksheet 2E
Total	1.000	0.088	1.000	0.256	0.344
		(2)* ${ }^{*}(3)_{\text {Fl }}$		(4)* ${ }^{*}$) ${ }_{\text {PDO }}$	(3)+(5)
Collision with parked vehicle	0.001	0.000	0.001	0.000	0.000
Collision with animal	0.002	0.000	0.002	0.001	0.001
Collision with fixed object	0.744	0.066	0.870	0.223	0.289
Collision with other object	0.072	0.006	0.070	0.018	0.024
Other single-vehicle collision	0.040	0.004	0.023	0.006	0.009
Single-vehicle noncollision	0.141	0.012	0.034	0.009	0.021

Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity Level	Predicted $\mathrm{N}_{\text {bimv }}$	Predicted $\mathrm{N}_{\text {bisv }}$	Predicted N_{bi}	$\mathbf{f}_{\text {pedi }}$	Calibration factor, C_{i}	Predicted $\mathbf{N}_{\text {pedi }}$
	(9) from Worksheet 2C	(9) from Worksheet 2E	(2) + (3)	from Table 12-16		$(4)^{\star}(5)^{\star}(6)$
Total	--	--	--	--	2.27	--
Fatal and injury (FI)	--	--	--	--	2.27	--

(1)	(2)	(3)	(4)
CMF for Bus Stops	CMF for Schools	CMF for Alcohol Sales Establishments	Combined CMF
$\mathrm{CMF}_{1 \mathrm{p}}$	$\mathrm{CMF}_{2 \mathrm{p}}$	$\mathrm{CMF}_{3 \mathrm{p}}$	
from Table 12-28	from Table 12-29	from Table 12-30	$(1)^{*}(2) *$ (3)
1.00	1.00	1.00	1.00

Worksheet 2I -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Signalized Intersections										
(1)	(2)					(3)	(4)	(5)	(6)	(7)
Crash Severity Level	SPF Coefficients					Overdispersion Parameter, k	$\mathbf{N}_{\text {pedbase }}$	Combined CMF	Calibration factor, C_{i}	Predicted $\mathbf{N}_{\text {pedi }}$
	from Table 12-14						from Equation 12-29	(4) from Worksheet 2H		$(4)^{*}(5)^{*}(6)$
	a	b	c	d	e					
Total	-9.53	0.40	0.26	0.45	0.04	0.24	0.008	1.00	2.27	0.008
Fatal and Injury (FI)	--	--	--	--	--	--	--	--	2.27	0.008

Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity Level	Predicted $\mathrm{N}_{\text {bimv }}$	Predicted $\mathrm{N}_{\text {bisv }}$	Predicted N_{bi}	$\mathrm{f}_{\text {bikei }}$	Calibration factor, $\mathbf{C}_{\mathbf{i}}$	Predicted $\mathrm{N}_{\text {bikei }}$
	(9) from Worksheet 2C	(9) from Worksheet 2E	(2) + (3)	from Table 12-17		$(4)^{*}(5)^{\star}(6)$
Total	5.522	0.344	5.866	0.015	2.27	0.088
Fatal and injury (FI)	--	--	--	--	2.27	0.088

Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections			
(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 2D and 2F; (7) from 2 G or 2 I and 2 J	(5) from Worksheet 2D and 2F	(6) from Worksheet 2D and 2F; (7) from 2 G or 2 I and 2 J
MULTIPLE-VEHICLE			
Rear-end collisions (from Worksheet 2D)	0.831	1.775	2.606
Head-on collisions (from Worksheet 2D)	0.090	0.110	0.201
Angle collisions (from Worksheet 2D)	0.641	0.897	1.537
Sideswipe (from Worksheet 2D)	0.183	0.118	0.300
Other multiple-vehicle collision (from Worksheet 2D)	0.102	0.776	0.877
Subtotal	1.846	3.676	5.522
SINGLE-VEHICLE			
Collision with parked vehicle (from Worksheet 2F)	0.000	0.000	0.000
Collision with animal (from Worksheet 2F)	0.000	0.001	0.001
Collision with fixed object (from Worksheet 2F)	0.066	0.223	0.289
Collision with other object (from Worksheet 2F)	0.006	0.018	0.024
Other single-vehicle collision (from Worksheet 2F)	0.004	0.006	0.009
Single-vehicle noncollision (from Worksheet 2F)	0.012	0.009	0.021
Collision with pedestrian (from Worksheet 2G or 2I)	0.008	0.000	0.008
Collision with bicycle (from Worksheet 2J)	0.088	0.000	0.088
Subtotal	0.184	0.256	0.440
Total	2.030	3.932	5.962

(1)	(2)
Crash severity level	Predicted average crash frequency, $\mathbf{N}_{\text {predicted int }}$ (crashes/year)
	(Total) from Worksheet 2K
Total	6.0
Fatal and injury (FI)	2.0
Property damage only (PDO)	3.9

Urban/Suburban Arterial - Signalized 4 Leg Intersection

	Year	Major AADT	Minor AADT	Annual Number of Crashes						Annual Cost						
					Fatality	Incap.	Non-Inc.	Possible Injury	PDO	Fatality	Incap.	Non-Inc.	Possible Injury	PDO	Total Cost	Present Value
1	2025	19,700	1,900	6.0	0.048	0.274	0.847	1.395	3.404	\$519,421	\$243,550	\$152,545	\$145,025	\$26,214	\$1,086,754	\$1,044,956
2	2026	20,409	1,919	6.2	0.050	0.285	0.881	1.451	3.541	\$540,245	\$253,313	\$158,660	\$150,839	\$27,265	\$1,130,321	\$1,045,046
3	2027	21,144	1,938	6.4	0.052	0.297	0.916	1.509	3.683	\$561,909	\$263,471	\$165,022	\$156,888	\$28,358	\$1,175,649	\$1,045,147
4	2028	21,905	1,958	6.7	0.054	0.309	0.953	1.570	3.831	\$584,449	\$274,040	\$171,642	\$163,181	\$29,495	\$1,222,807	\$1,045,260
5	2029	22,694	1,977	7.0	0.056	0.321	0.991	1.633	3.984	\$607,899	\$285,036	\$118,529	\$169,728	\$30,679	\$1,271,871	\$1,045,385
6	2030	23,511	1,997	7.3	0.058	0.334	1.031	1.698	4.144	\$632,297	\$296,475	\$185,694	\$176,540	\$31,910	\$1,322,917	\$1,045,521
7	2031	24,357	2,017	7.5	0.060	0.347	1.072	1.766	4.311	\$657,681	\$308,378	\$193,149	\$183,628	\$33,191	\$1,376,027	\$1,045,667
8	2032	25,234	2,037	7.9	0.063	0.361	1.115	1.837	4.484	\$684,092	\$320,761	\$200,905	\$191,002	\$34,524	\$1,431,284	\$1,045,825
9	2033	26,142	2,057	8.2	0.065	0.376	1.160	1.911	4.664	\$711,570	\$333,645	\$208,975	\$198,674	\$35,911	\$1,488,775	\$1,045,994
10	2034	27,083	2,078	8.5	0.068	0.391	1.206	1.988	4.851	\$740,159	\$347,051	\$217,371	\$206,656	\$37,354	\$1,548,591	\$1,046,173
11	2035	28,058	2,099	8.8	0.071	0.407	1.255	2.068	5.046	\$769,905	\$360,998	\$226,107	\$214,961	\$38,855	\$1,610,827	\$1,046,362
12	2036	29,069	2,120	9.2	0.074	0.423	1.305	2.151	5.249	\$800,855	\$375,510	\$235,196	\$223,602	\$40,417	\$1,675,580	\$1,046,562
13	2037	30,115	2,141	9.6	0.076	0.440	1.358	2.238	5.460	\$833,056	\$390,609	\$244,653	\$232,593	\$42,042	\$1,742,953	\$1,046,772
14	2038	31,199	2,162	9.9	0.080	0.458	1.412	2.328	5.680	\$866,560	\$406,318	\$254,493	\$241,948	\$43,733	\$1,813,052	\$1,046,992
15	2039	32,322	2,184	10.3	0.083	0.476	1.469	2.421	5.908	\$901,421	\$422,664	\$264,731	\$251,681	\$45,492	\$1,885,989	\$1,047,223
16	2040	33,486	2,206	10.8	0.086	0.495	1.528	2.519	6.146	\$937,692	\$439,671	\$275,383	\$261,808	\$47,323	\$1,961,877	\$1,047,462
17	2041	34,691	2,228	11.2	0.090	0.515	1.590	2.620	6.393	\$975,432	\$457,367	\$286,467	\$272,345	\$49,227	\$2,040,838	\$1,047,712
18	2042	35,940	2,250	11.6	0.093	0.536	1.654	2.725	6.651	\$1,014,700	\$475,779	\$297,999	\$283,309	\$51,209	\$2,122,997	\$1,047,971
19	2043	37,234	2,273	12.1	0.097	0.557	1.720	2.835	6.918	\$1,055,559	\$494,937	\$309,998	\$294,717	\$53,271	\$2,208,482	\$1,048,239
20	2044	38,575	2,295	12.6	0.101	0.580	1.790	2.949	7.197	\$1,098,072	\$514,871	\$322,484	\$306,587	\$55,417	\$2,297,430	\$1,048,517
21	2045	39,963	2,318	13.1	0.105	0.603	1.862	3.068	7.487	\$1,142,307	\$535,612	\$335,475	\$318,937	\$57,649	\$2,389,981	\$1,048,804
	2046	41,402	2,342		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2047	42,892	2,365		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2048	44,437	2,389		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2049	46,036	2,412		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2050	47,694	2,437		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	2051	49,411	2,461		0.000	0.000	0.000	0.000	0.000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	d cel	es the	T is ou	190.9											Present Valu	\$21,977,591

NOTES:

1. Present Value $=$ Future Cash Flow $/(1+\text { Required Rate of Return })^{\text {Number of Years You Have To Wait For The Cash Flow }}$
2. Traffic Growth Rate $=\left[\left(\left(A D T_{f} / A D T_{i}\right)^{(1 /(F-1)}\right)-1\right] \times 100$
where $\mathrm{ADT}_{\mathrm{f}}=$ Average Daily Traffic for Future Year
$A D T_{i}=$ Average Daily Traffic for Initial Year
I = Initial Year for ADT
3. Column F(Site Specific (Npredicted / expected)) is updated based on manually updating AADT within the copy of the spreadsheet and get copy the crash rate for each year here

Appendix C

Preliminary Synchro Analysis SR 31 at Marina and Restaurant Entrance

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

Platoon blocked, \%

Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach	EB	WB	NB
HCM Control Delay, S\$ 313.3	49.2		SB
HCM LOS	F	E	3.4

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	+	-	-	161	98	40	-
HCM Lane V/C Ratio	-	-	-1.517	0.172	0.842	-	-
HCM Control Delay (s)	-	-	$-\$ 313.3$	49.2	247.5	-	-
HCM Lane LOS	-	-	-	F	E	F	-
HCM 95th \%tile Q(veh)	-	-	-	16.1	0.6	3.2	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection													
Int Delay，s／veh	10.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		＊			H	虾		${ }^{7}$	444	「
Traffic Vol，veh／h	44	0	59	20	0	28	56	77	967	20	20	1174	38
Future Vol，veh／h	44	0	59	20	0	28	56	77	967	20	20	1174	38
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free						
RT Channelized	－	－	None	－	－	None	－	－	－	None	－	－	None
Storage Length	－	－	100	－	－	－	－	400	－	－	150	－	220
Veh in Median Storage，\＃	\＃	0	－	－	0	－	－	－	0	－	－	0	－
Grade，\％	－	0	－	－	0	－	－	－	0	－	－	0	－
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles，\％	6	2	6	2	2	2	2	6	6	2	2	6	6
Mvmt Flow	46	0	62	21	0	29	59	81	1018	21	21	1236	40

Minor Lane／Major Mvmt	NBL	NBT	NBR EBLn1	EBLn2W	VBLn1	SBL	SBT	SBR	
Capacity（veh／h）	323	－	38	363	89	375	－		－
HCM Lane V／C Ratio	0.433	－	－ 1.219	0.171	0.568	0.056	－		－
HCM Control Delay（s）	24.4	－	\＄ 382.2	17	88.9	15.2	－		－
HCM Lane LOS	C	－	F	C	F	C	－		－
HCM 95th \％tile Q（veh）	2.1	－	4.7	0.6	2.6	0.2	－		－
Notes									
\sim ：Volume exceeds capacity	\＄：D	ay exc	eds 300s	＋：Comp	putation	Not D	fined	＊：All	Ill major volume in platoon

Intersection													
Int Delay，s／veh	23												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	F＇		\leftrightarrow			\＃	种中		${ }^{7}$	來乐	「
Traffic Vol，veh／h	58	0	112	27	0	16	103	76	1204	27	27	989	83
Future Vol，veh／h	58	0	112	27	0	16	103	76	1204	27	27	989	83
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free						
RT Channelized	－	－	None	－	－	None	－	－	－	None	－	－	None
Storage Length	－	－	100	－	－	－	－	400	－	－	150	－	220
Veh in Median Storage，\＃	\＃	0	－	－	0	－	－	－	0	－	－	0	－
Grade，\％	－	0	－	－	0	－	－	－	0	－	－	0	－
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles，\％	6	2	6	2	2	2	2	6	6	2	2	6	6
Mvmt Flow	61	0	118	28	0	17	108	80	1267	28	28	1041	87

Approach	EB	WB	NB	SB
HCM Control Delay，s	227	$\$ 448.1$	2.9	0.5
HCM LOS	F	F		

Minor Lane／Major Mvmt	NBL	NBT	NBR EBLn1 EBLn2WBLn1	SBL	SBT	SBR			
Capacity（veh／h）	383	-	-	34	420	34	281	-	-
HCM Lane V／C Ratio	0.492	-	-	1.796	0.281	1.331	0.101	-	-
HCM Control Delay（s）	23.1	-	$-\$ 632.8$	$16.9 \$ 448.1$	19.2	-	-		
HCM Lane LOS	C	-	-	F	C	F	C	-	-
HCM 95th \％tile Q（veh）	2.6	-	-	6.8	1.1	4.9	0.3	-	-
Notes									
～：Volume exceeds capacity	\＄：Delay exceeds 300s	$+:$ Computation Not Defined	＊：All major volume in platoon						

Approach	EB	WB	NB
HCM Control Delay, s	162.4	SB	

HCM LOS

Intersection													
Int Delay，s／veh	79.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		＊			\＃	虾		${ }^{1}$	444	「
Traffic Vol，veh／h	68	0	132	32	0	16	122	89	2710	32	32	2183	98
Future Vol，veh／h	68	0	132	32	0	16	122	89	2710	32	32	2183	98
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free						
RT Channelized	－	－	None	－	－	None	－	－	－	None	－	－	None
Storage Length	－	－	100	－	－	－	－	400	－	－	150	－	220
Veh in Median Storage，\＃	\＃	0	－	－	0	－	－	－	0	－	－	0	－
Grade，\％	－	0	－	－	0	－	－	－	0	－	－	0	－
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles，\％	5	2	5	2	2	2	2	5	5	2	2	5	5
Mvmt Flow	72	0	139	34	0	17	128	94	2853	34	34	2298	103

Approach	EB	WB	NB

HCM LOS

Appendix D Warrants Analysis SR 31 at Marina and Restaurant Entrance

Marina/Restaurant/Babcock Ranch Road at SR 31 Signal Warrant Volumes (Year 2025)								
Time	EB	WB	NB	SB	Major St. Approaches	Highest Minor St. Approach	Total Volume	Rank by Minor Approach
12:00 AM	1	2	55	75	131	2	133	22
1:00 AM	1	1	41	51	92	1	93	24
2:00 AM	1	1	26	54	80	1	82	23
3:00 AM	2	1	51	71	122	2	125	21
4:00 AM	3	3	81	103	184	3	190	20
5:00 AM	1	9	306	221	527	9	537	19
6:00 AM	6	10	745	702	1,447	10	1,463	18
7:00 AM	8	18	990	829	1,818	18	1,844	15
8:00 AM	9	16	817	937	1,754	16	1,779	17
9:00 AM	19	12	838	703	1,541	19	1,572	14
10:00 AM	21	14	806	680	1,486	21	1,522	13
11:00 AM	31	16	880	698	1,578	31	1,625	12
12:00 PM	49	27	926	810	1,736	49	1,812	10
1:00 PM	64	38	985	871	1,856	64	1,957	7
2:00 PM	63	37	978	874	1,852	63	1,952	8
3:00 PM	80	43	1,104	1,030	2,134	80	2,257	4
4:00 PM	103	48	1,120	1,232	2,352	103	2,503	2
5:00 PM	170	43	1,410	1,099	2,509	170	2,722	1
6:00 PM	81	27	956	823	1,779	81	1,887	3
7:00 PM	80	22	686	598	1,285	80	1,387	5
8:00 PM	75	17	498	498	996	75	1,088	6
9:00 PM	55	12	352	369	721	55	788	9
10:00 PM	35	8	209	240	450	35	492	11
11:00 PM	17	4	101	122	223	17	244	16

Marina/Restaurant/Babcock Ranch Road at SR 31 Signal Warrant Volumes (Year 2035)								
Time	EB	WB	NB	SB	Major St. Approaches	Highest Minor St. Approach	Total Volume	Rank by Minor Approach
12:00 AM	1	1	97	137	234	1	236	23
1:00 AM	1	1	71	93	164	1	166	24
2:00 AM	1	1	46	98	144	1	145	22
3:00 AM	2	1	89	129	218	2	222	21
4:00 AM	3	3	142	188	330	3	336	20
5:00 AM	1	7	536	402	937	7	946	19
6:00 AM	6	8	1,303	1,279	2,582	8	2,596	18
7:00 AM	10	16	1,731	1,509	3,240	16	3,265	16
8:00 AM	10	14	1,429	1,707	3,135	14	3,159	17
9:00 AM	22	13	1,465	1,280	2,745	22	2,781	14
10:00 AM	24	15	1,410	1,238	2,648	24	2,688	13
11:00 AM	35	17	1,540	1,270	2,810	35	2,863	12
12:00 PM	53	26	1,620	1,475	3,095	53	3,174	10
1:00 PM	69	40	1,724	1,585	3,309	69	3,418	7
2:00 PM	68	39	1,711	1,592	3,303	68	3,410	8
3:00 PM	87	46	1,932	1,874	3,806	87	3,938	4
4:00 PM	112	51	1,621	1,787	3,408	112	3,571	2
5:00 PM	184	45	2,041	1,594	3,635	184	3,865	1
6:00 PM	88	28	1,673	1,497	3,170	88	3,287	3
7:00 PM	87	23	1,201	1,089	2,290	87	2,400	5
8:00 PM	81	18	871	906	1,777	81	1,877	6
9:00 PM	60	13	616	671	1,287	60	1,360	9
10:00 PM	38	8	366	438	804	38	850	11
11:00 PM	19	4	177	222	399	19	422	15

Marina/Restaurant/Babcock Ranch Road at SR 31 Signal Warrant Volumes (Year 2045)								
Time	EB	WB	NB	SB	Major St. Approaches	Highest Minor St. Approach	Total Volume	Rank by Minor Approach
12:00 AM	2	2	106	160	266	2	270	21
1:00 AM	1	2	78	108	186	2	189	23
2:00 AM	1	1	50	114	164	1	166	24
3:00 AM	1	2	98	150	248	2	252	22
4:00 AM	2	3	156	219	375	3	380	20
5:00 AM	1	4	588	468	1,055	4	1,061	19
6:00 AM	4	6	1,429	1,489	2,918	6	2,928	18
7:00 AM	6	12	1,899	1,757	3,656	12	3,674	16
8:00 AM	8	11	1,567	1,987	3,554	11	3,574	17
9:00 AM	15	17	1,607	1,491	3,098	17	3,131	14
10:00 AM	17	16	1,547	1,441	2,989	17	3,022	15
11:00 AM	32	28	1,689	1,479	3,169	32	3,228	12
12:00 PM	76	31	1,777	1,717	3,494	76	3,601	8
1:00 PM	99	41	1,891	1,812	3,703	99	3,844	5
2:00 PM	87	43	1,877	1,820	3,697	87	3,828	6
3:00 PM	108	48	2,119	2,143	4,262	108	4,418	3
4:00 PM	136	59	2,432	2,790	5,222	136	5,417	2
5:00 PM	200	48	2,953	2,313	5,266	200	5,514	1
6:00 PM	102	32	1,835	1,744	3,579	102	3,713	4
7:00 PM	80	23	1,317	1,268	2,586	80	2,689	7
8:00 PM	66	18	956	1,055	2,011	66	2,095	9
9:00 PM	65	13	676	782	1,457	65	1,536	10
10:00 PM	41	8	402	510	911	41	961	11
11:00 PM	21	4	194	259	453	21	477	13

SIGNAL WARRANT ANALYSIS

Introduction

- The Signal Warrant Analysis Spreadsheets are a tool for assisting traffic engineers when evaluating the need for a traffic signal installation
- The filled spreadsheets can be used as part of the supporting documents for the signal warrant evaluation

Note: This templates are a useful resource, but it remains necessary to apply engineering judgment and to consider specific environmental, traffic, geometric, and operational conditions

```
Instructions
Fill in "Orange" areas only
Automated cells based on in Input
Data in "orange" cells
General Information
Enter Eight Hour Volumes
Enter Four Hour Volumes
Enter Pedestrian Volumes (4-hr)
Enter Peak Hour Volumes
Fill in below the general information including:
District, County (drop-down menu)
City, Engineer, Date
Major and Minor Street with corresponding number of lanes and speed limits
Any 8 hours of an average day. Major-street and minor-street volumes shall be for the same 8 hours; however, the 8 hours satisfied in Condition A shall not be required to be the same 8 hours satisfied in Condition B for \(80 \%\) columns only. On the minor street, the higher volume shall not be required to be on the same approach during each of the 8 hours.
Any 4 hours of an average day. Vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach (one direction only, not required to be on the same approach during each of the 4 hours)
Pedestrians per hour crossing the major street (total of all crossings)
Enter Peak Hour Volumes
Vehicular: Any four consecutive 15-minute periods of an average day
Pedestrian: Any four consecutive 15-minute periods of an average day representing the vehicles per hour on the major street (total of both approaches) and the corresponding pedestrians per hour crossing the major street (total of all crossings)
```


TRAFFIC SIGNAL WARRANT SUMMARY

Engineer: \qquad
Date:

Lanes: $\quad \mathbf{6}$
Lanes: $\quad \mathbf{2}$

Major Approach Speed:
Minor Approach Speed: \qquad 45 30

TRAFFIC SIGNAL WARRANT SUMMARY

Condition B - Interruption of Continuous Traffic

Condition B is intended for application where Condition A is not satisfied and the traffic volume on a major street is so heavy that traffic on the minor intersecting street suffers excessive delay or conflict in entering or crossing the major street.

Applicable:	\square Yes	\square No
100\% Satisfied:	\square Yes	\square No
80\% Satisfied:	\square Yes	\square No
70\% Satisfied:	\square Yes	\square No

Number of traffic on	for moving approach	Vehicles per hour on majorstreet (total of both approaches)			Vehicles per hour on minorstreet (one direction only)		
Major	Minor	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$
1	1	750	600	525	75	60	53
2 or more	1	900	720	630	75	60	53
2 or more	2 or more	900	720	630	100	80	70
1	2 or more	750	600	525	100	80	70

${ }^{\text {a }}$ Basic Minimum hourly volume
${ }^{\mathrm{b}}$ Used for combination of Conditions A and B after adequate trial of other remedial measures
${ }^{\text {c }}$ May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

Record 8 highest hours and the corresponding major-street and minor-street volumes in the Instructions Sheet.

Eight Highest Hours								
Street		$\begin{aligned} & \sum_{0} \\ & 0 \\ & \stackrel{\rightharpoonup}{\dot{\theta}} \end{aligned}$	\sum_{0} 0 0 0	$\begin{aligned} & \sum_{0} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$		$\begin{aligned} & \Sigma \Sigma_{0} \\ & \text { ọi } \\ & \dot{\phi} \end{aligned}$	$\begin{aligned} & \Sigma \\ & \\ & \hline \mathbf{O} \end{aligned}$	$\begin{aligned} & \underset{0}{\boldsymbol{N}} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \\ & \dot{\mathrm{~N}} \end{aligned}$
Major	2,509	2,352	1,779	2,134	1,285	996	1,856	1,852
Minor	170	103	81	80	80	75	64	63

Existing Volumes

SIGNAL WARRANT ANALYSIS

Introduction

- The Signal Warrant Analysis Spreadsheets are a tool for assisting traffic engineers when evaluating the need for a traffic signal installation
- The filled spreadsheets can be used as part of the supporting documents for the signal warrant evaluation

Note: This templates are a useful resource, but it remains necessary to apply engineering judgment and to consider specific environmental, traffic, geometric, and operational conditions

```
Instructions
Fill in "Orange" areas only
Automated cells based on in Input
Data in "orange" cells
General Information
Enter Eight Hour Volumes
Enter Four Hour Volumes
Enter Pedestrian Volumes (4-hr)
Enter Peak Hour Volumes
Fill in below the general information including:
District, County (drop-down menu)
City, Engineer, Date
Major and Minor Street with corresponding number of lanes and speed limits
Any 8 hours of an average day. Major-street and minor-street volumes shall be for the same 8 hours; however, the 8 hours satisfied in Condition A shall not be required to be the same 8 hours satisfied in Condition B for \(80 \%\) columns only. On the minor street, the higher volume shall not be required to be on the same approach during each of the 8 hours.
Any 4 hours of an average day. Vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach (one direction only, not required to be on the same approach during each of the 4 hours)
Pedestrians per hour crossing the major street (total of all crossings)
Enter Peak Hour Volumes
Vehicular: Any four consecutive 15-minute periods of an average day
Pedestrian: Any four consecutive 15-minute periods of an average day representing the vehicles per hour on the major street (total of both approaches) and the corresponding pedestrians per hour crossing the major street (total of all crossings)
```

Input Data							
		Engineer:		Major Approach Speed: Minor Approach Speed:			Form 750-020-01 TRAFFIC ENGINEERING 10/15
	12 - Lee		AECOM				
	One	Date:	March 8th, 2023				
Major Street: Minor Street:	SR 31	\# Lanes:	6		45		
	Restaurant	\# Lanes:	2		30		
	Eight Hour Volumes (Condition A)				Eight Hour Volumes (Condition B)		
	Hours	Major Street (total of both approaches)	Minor Street (one direction only)		Hours	Major Street (total of both approaches)	Minor Street (one direction only)
	5:00 PM	3635	184		5:00 PM	3635	184
	4:00 PM	3408	112		4:00 PM	3408	112
	6:00 PM	3170	88		6:00 PM	3170	88
	3:00 PM	3806	87		3:00 PM	3806	87
	7:00 PM	2290	87		7:00 PM	2290	87
	8:00 PM	1777	81		8:00 PM	1777	81
	7:00 PM	3309	69		7:00 PM	3309	69
	2:00 PM	3303	68		2:00 PM	3303	68
	Highest Four Hour Vehicular Volumes				Highest Four Hour Pedestrian Volumes		
	Hours	Major Street (total of both approaches)	Minor Street (one direction only)		Hours	Major Street (total of both approaches)	Pedestrian Crossings on Major Street
	5:00 PM	3635	184				
	4:00 PM	3408	112				
	6:00 PM	3170	88				
	3:00 PM	3806	87				
	Vehicular Peak Hour Volumes						
	Peak Hour	Major Street (total of both approaches)	Minor Street (one direction only)	Total Entering Volume			
	5:00 PM	3635	184	3865			
	Pedestrian Peak Hour Volumes						
	Peak Hour	Major Street (total of both approaches)	Pedestrian Crossing Volumes on Major Street				

State of Florida Department of Transportation

TRAFFIC SIGNAL WARRANT SUMMARY

Major Street: \qquad

Engineer: \qquad
Date: March 8th, 2023

Lanes: $\quad \mathbf{6}$
Lanes:

Major Approach Speed: \qquad 45 Minor Approach Speed: \qquad

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

Volume Level Criteria

1. Is the posted speed or 85 th-percentile of major street $>40 \mathrm{mph}(70 \mathrm{~km} / \mathrm{h})$?
2. Is the intersection in a built-up area of an isolated community with a population < 10,000?

" 70% " volume level may be used if Question 1 or 2 above is answered "Yes"
V 70\%

- 100\%

WARRANT 1 - EIGHT-HOUR VEHICULAR VOLUME

Warrant 1 is satisfied if Condition A or Condition B is "100\%" satisfied for eight hours. Warrant 1 is also satisfied if both Condition A and Condition B are " 80% " satisfied (should only be applied after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems).

Condition A - Minimum Vehicular Volume

Condition A is intended for application at locations where a large volume of	100\% Satisfied:	\square Yes
intersecting traffic is the principal reason to consider installing a traffic control		
signal.	80% Satisfied:	\square Yes

Number of traffic on	for moving approach	Vehicles per hour on majorstreet (total of both approaches)			Vehicles per hour on minorstreet (one direction only)		
Major	Minor	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$
1	1	500	400	350	150	120	105
2 or more	1	600	480	420	150	120	105
2 or more	2 or more	600	480	420	200	160	140
1	2 or more	500	400	350	200	160	140

${ }^{\text {a }}$ Basic Minimum hourly volume
${ }^{\mathrm{b}}$ Used for combination of Conditions A and B after adequate trial of other remedial measures
${ }^{\text {c }}$ May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000
Record 8 highest hours and the corresponding major-street and minor-street volumes in the Instructions Sheet.

	Eight Highest Hours							
Street	$\begin{aligned} & \sum_{0}^{n} \\ & \text { O} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \sum \\ & \underset{0}{0} \\ & \stackrel{O}{\dot{\gamma}} \end{aligned}$	$\begin{aligned} & \sum \\ & \mathbf{N} \\ & \hline \mathbf{O} \\ & \ddot{0} \end{aligned}$	$$		$\begin{aligned} & \sum_{0}^{n} \\ & \text { O} \\ & \stackrel{\infty}{\infty} \end{aligned}$		
Major	3,635	3,408	3,170	3,806	2,290	1,777	3,309	3,303
Minor	184	112	88	87	87	81	69	68

Existing Volumes

TRAFFIC SIGNAL WARRANT SUMMARY

Condition B - Interruption of Continuous Traffic

Condition B is intended for application where Condition A is not satisfied and the traffic volume on a major street is so heavy that traffic on the minor intersecting street suffers excessive delay or conflict in entering or crossing the major street.

Applicable:	\square Yes	\square No
100\% Satisfied:	\square Yes	\square No
80\% Satisfied:	\square Yes	\square No
70\% Satisfied:	\square Yes	\square No

Number of traffic on	for moving approach	Vehicles per hour on majorstreet (total of both approaches)			Vehicles per hour on minorstreet (one direction only)		
Major	Minor	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$
1	1	750	600	525	75	60	53
2 or more	1	900	720	630	75	60	53
2 or more	2 or more	900	720	630	100	80	70
1	2 or more	750	600	525	100	80	70

${ }^{\text {a }}$ Basic Minimum hourly volume
${ }^{\mathrm{b}}$ Used for combination of Conditions A and B after adequate trial of other remedial measures
${ }^{\text {c }}$ May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

Record 8 highest hours and the corresponding major-street and minor-street volumes in the Instructions Sheet.

Eight Highest Hours								
Street	$\begin{aligned} & \sum_{0} \\ & \text { O} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \sum \underset{0}{\sum} \\ & \stackrel{O}{\dot{j}} \end{aligned}$				$\begin{aligned} & \sum_{0} \\ & \stackrel{O}{\circ} \\ & \ddot{\infty} \end{aligned}$		
Major	3,635	3,408	3,170	3,806	2,290	1,777	3,309	3,303
Minor	184	112	88	87	87	81	69	68

Existing Volumes

SIGNAL WARRANT ANALYSIS

Introduction

- The Signal Warrant Analysis Spreadsheets are a tool for assisting traffic engineers when evaluating the need for a traffic signal installation
- The filled spreadsheets can be used as part of the supporting documents for the signal warrant evaluation

Note: This templates are a useful resource, but it remains necessary to apply engineering judgment and to consider specific environmental, traffic, geometric, and operational conditions

```
Instructions
Fill in "Orange" areas only
Automated cells based on in Input
Data in "orange" cells
General Information
Enter Eight Hour Volumes
Enter Four Hour Volumes
Enter Pedestrian Volumes (4-hr)
Enter Peak Hour Volumes
Fill in below the general information including:
District, County (drop-down menu)
City, Engineer, Date
Major and Minor Street with corresponding number of lanes and speed limits
Any 8 hours of an average day. Major-street and minor-street volumes shall be for the same 8 hours; however, the 8 hours satisfied in Condition A shall not be required to be the same 8 hours satisfied in Condition B for \(80 \%\) columns only. On the minor street, the higher volume shall not be required to be on the same approach during each of the 8 hours.
Any 4 hours of an average day. Vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach (one direction only, not required to be on the same approach during each of the 4 hours)
Pedestrians per hour crossing the major street (total of all crossings)
Enter Peak Hour Volumes
Vehicular: Any four consecutive 15-minute periods of an average day
Pedestrian: Any four consecutive 15-minute periods of an average day representing the vehicles per hour on the major street (total of both approaches) and the corresponding pedestrians per hour crossing the major street (total of all crossings)
```


TRAFFIC SIGNAL WARRANT SUMMARY

Engineer: \qquad
Date:

Lanes: $\quad \mathbf{6}$
Lanes: $\quad \mathbf{2}$

Major Approach Speed:
Minor Approach Speed: \qquad 45 30

TRAFFIC SIGNAL WARRANT SUMMARY

Condition B - Interruption of Continuous Traffic

Condition B is intended for application where Condition A is not satisfied and the traffic volume on a major street is so heavy that traffic on the minor intersecting street suffers excessive delay or conflict in entering or crossing the major street.
100\% Satisfied: \square Yes \square
80\% Satisfied: \square Yes \square No
70\% Satisfied: \square Yes \square N No

Number of traffic on	for moving approach	Vehicles per hour on majorstreet (total of both approaches)			Vehicles per hour on minorstreet (one direction only)		
Major	Minor	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$
1	1	750	600	525	75	60	53
2 or more	1	900	720	630	75	60	53
2 or more	2 or more	900	720	630	100	80	70
1	2 or more	750	600	525	100	80	70

${ }^{\text {a }}$ Basic Minimum hourly volume
${ }^{b}$ Used for combination of Conditions A and B after adequate trial of other remedial measures
${ }^{\text {c }}$ May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

Record 8 highest hours and the corresponding major-street and minor-street volumes in the Instructions Sheet.

Eight Highest Hours								
Street			$\begin{aligned} & \sum_{0} \\ & \text { O} \\ & \text { è } \end{aligned}$			$\begin{aligned} & \sum_{0} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \text { in } \end{aligned}$		$\begin{aligned} & \sum_{0} \\ & \text { 을 } \\ & \underset{\sim}{n} \end{aligned}$
Major	5,266	5,222	4,262	3,579	3,703	3,697	2,586	3,494
Minor	200	136	108	102	99	87	80	76

Existing Volumes

Appendix E
 Design Year (2045) - Build Synchro Outputs

	\dagger			\dagger		4	\dagger	4	\dagger	p		\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations		\uparrow	「		\＄			\％	快		${ }^{7}$	4舟
Trafic Volume（veh／h）	44	0	59	20	0	28	56	77	967	20	20	1174
Future Volume（veh／h）	44	0	59	20	0	28	56	77	967	20	20	1174
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0		0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00		1.00		1.00	1.00	
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No				No			No
Adj Sat Flow，veh／h／ln	1811	1870	1811	1870	1870	1870		1811	1811	1870	1870	1811
Adj Flow Rate，veh／h	46	0	62	21	0	29		81	1018	21	21	1236
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％	6	2	6	2	2	2		，	6	2	2	6
Cap，veh／h	242	0	119	118	12	61		106	2982	61	44	2773
Arrive On Green	0.08	0.00	0.08	0.08	0.00	0.08		0.06	0.60	0.60	0.02	0.56
Sat Flow，veh／h	1580	0	1535	423	150	790		1725	4986	103	1781	4944
Grp Volume（v），veh／h	46	0	62	50	0	0		81	673	366	21	1236
Grp Sat Flow（s），veh／h／ln	1580	0	1535	1363	0	0		1725	1648	1793	1781	1648
Q Serve（g＿s），s	0.0	0.0	2.3	0.8	0.0	0.0		2.8	6.2	6.2	0.7	8.8
Cycle Q Clear（g＿c），s	1.5	0.0	2.3	2.3	0.0	0.0		2.8	6.2	6.2	0.7	8.8
Prop In Lane	1.00		1.00	0.42		0.58		1.00		0.06	1.00	
Lane Grp Cap（c），veh／h	242	0	119	191	0	0		106	1971	1072	44	2773
V／C Ratio（X）	0.19	0.00	0.52	0.26	0.00	0.00		0.76	0.34	0.34	0.48	0.45
Avail Cap（c＿a），veh／h	550	0	460	518	0	0		172	1971	1072	148	2773
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	1.00	1.00	0.00	0.00		1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	26.2	0.0	26.6	26.5	0.0	0.0		27.7	6.1	6.1	28.9	7.7
Incr Delay（d2），s／veh	0.4	0.0	3.5	0.7	0.0	0.0		10.6	0.5	0.9	7.9	0.5
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／In	0.6	0.0	0.9	0.7	0.0	0.0		1.4	1.6	1.8	0.4	2.3
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	26.6	0.0	30.1	27.3	0.0	0.0		38.3	6.6	7.0	36.8	8.2
LnGrp LOS	C	A	C	C	A	A		D	A	A	D	A
Approach Vol，veh／h		108			50				1120			1297
Approach Delay，s／veh		28.6			27.3				9.0			8.6
Approach LOS		C			C				A			A

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	7.5	41.9	10.6	9.7	39.7	10.6
Change Period（Y＋Rc），s	6.0	6.0	6.0	6.0	6.0	6.0
Max Green Setting（Gmax），s	5.0	19.0	18.0	6.0	18.0	18.0
Max Q Clear Time（g＿c +11 ），s	2.7	8.2	4.3	4.8	10.8	4.3
Green Ext Time（p＿c），s	0.0	4.7	0.3	0.0	4.4	0.1

Intersection Summary

HCM 6th Ctrl Delay	10.0
HCM 6th LOS	A

Notes
User approved ignoring U－Turning movement．

Movement	SBR
	「
Traffic Volume (veh/h)	38
Future Volume (veh/h)	38
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1811
Adj Flow Rate, veh/h	40
Peak Hour Factor	0.95
Percent Heavy Veh, \%	6
Cap, veh/h	861
Arrive On Green	0.56
Sat Flow, veh/h	1535
Grp Volume(v), veh/h	40
Grp Sat Flow(s),veh/h/ln	1535
Q Serve(g_s), s	0.7
Cycle Q Clear(g_c), s	0.7
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	861
V/C Ratio(X)	0.05
Avail Cap(c_a), veh/h	861
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	5.9
Incr Delay (d2), s/veh	0.1
Initial Q Delay(d3),s/veh	0.0
\%ile BackOfQ(50\%),veh/ln	0.2
Unsig. Movement Delay, s/veh	
LnGrp Delay(d), s/veh	6.0
LnGrp LOS	A
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	

	$\stackrel{ }{*}$			\dagger		4	\dagger	4	\uparrow	p		\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations		\uparrow	\％		\dagger			\％	㔼		\％	个个4
Traffic Volume（veh／h）	58	0	112	27	0	16	103	76	1204	27	27	989
Future Volume（veh／h）	58	0	112	27	0	16	103	76	1204	27	27	989
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0		0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00		1.00		1.00	1.00	
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No				No			No
Adj Sat Flow，veh／h／ln	1811	1870	1811	1870	1870	1870		1811	1811	1870	1870	1811
Adj Flow Rate，veh／h	61	0	118	28	0	17		80	1267	28	28	1041
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％	6	2	6	2	2	2		6	6	2	2	6
Cap，veh／h	292	0	173	167	21	55		106	2768	61	55	2600
Arrive On Green	0.11	0.00	0.11	0.11	0.00	0.11		0.06	0.56	0.56	0.03	0.53
Sat Flow，veh／h	1522	0	1535	617	188	489		1725	4977	110	1781	4944
Grp Volume（v），veh／h	61	0	118	45	0	0		80	839	456	28	1041
Grp Sat Flow（s），veh／h／ln	1522	0	1535	1295	0	0		1725	1648	1791	1781	1648
Q Serve（g＿s），s	0.0	0.0	4.4	0.3	0.0	0.0		2.7	9.1	9.1	0.9	7.6
Cycle Q Clear（g＿c），s	1.9	0.0	4.4	2.2	0.0	0.0		2.7	9.1	9.1	0.9	7.6
Prop In Lane	1.00		1.00	0.62		0.38		1.00		0.06	1.00	
Lane Grp Cap（c），veh／h	292	0	173	243	0	0		106	1833	996	55	2600
V／C Ratio（X）	0.21	0.00	0.68	0.18	0.00	0.00		0.76	0.46	0.46	0.51	0.40
Avail Cap（c＿a），veh／h	553	0	460	501	0	0		172	1833	996	148	2600
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	1.00	1.00	0.00	0.00		1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	24.4	0.0	25.6	24.4	0.0	0.0		27.7	7.9	7.9	28.6	8.5
Incr Delay（d2），s／veh	0.4	0.0	4.7	0.4	0.0	0.0		10.4	0.8	1.5	7.0	0.5
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／In	0.8	0.0	1.7	0.6	0.0	0.0		1.3	2.5	2.9	0.5	2.1
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	24.8	0.0	30.2	24.7	0.0	0.0		38.1	8.8	9.4	35.6	9.0
LnGrp LOS	C	A	C	C	A	A		D	A	A	D	A
Approach Vol，veh／h		179			45				1375			1156
Approach Delay，s／veh		28.4			24.7				10.7			9.5
Approach LOS		C			C				B			A
Timer－Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ），s	7.9	39.4		12.8	9.7	37.5		12.8				
Change Period（ $Y+R \mathrm{c}$ ）， s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting（Gmax），s	5.0	19.0		18.0	6.0	18.0		18.0				
Max Q Clear Time（g＿c＋11），s	2.9	11.1		6.4	4.7	9.6		4.2				
Green Ext Time（p＿c），s	0.0	4.7		0.5	0.0	4.4		0.1				
Intersection Summary												
HCM 6th Ctrr Delay			11.6									
HCM 6th LOS			B									

Notes

User approved ignoring U－Turning movement．

Movement	SBR
	「
Traffic Volume (veh/h)	83
Future Volume (veh/h)	83
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1811
Adj Flow Rate, veh/h	87
Peak Hour Factor	0.95
Percent Heavy Veh, \%	6
Cap, veh/h	807
Arrive On Green	0.53
Sat Flow, veh/h	1535
Grp Volume(v), veh/h	87
Grp Sat Flow(s),veh/h/ln	1535
Q Serve(g_s), s	1.7
Cycle Q Clear(g_c), s	1.7
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	807
V/C Ratio(X)	0.11
Avail Cap(c_a), veh/h	807
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	7.2
Incr Delay (d2), s/veh	0.3
Initial Q Delay(d3),s/veh	0.0
\%ile BackOfQ(50\%),veh/In	0.5
Unsig. Movement Delay, s/veh	
LnGrp Delay(d),s/veh	7.4
LnGrp LOS	A
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	

	$\stackrel{ }{*}$			\dagger		4	\dagger	4	\uparrow	p		\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations		\uparrow	7		\dagger			\％	㔼		\％	个个4
Traffic Volume（veh／h）	54	0	82	25	0	34	70	93	2244	25	25	2720
Future Volume（veh／h）	54	0	82	25	0	34	70	93	2244	25	25	2720
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0		0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00		1.00		1.00	1.00	
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No				No			No
Adj Sat Flow，veh／h／ln	1826	1870	1826	1870	1870	1870		1826	1826	1870	1870	1826
Adj Flow Rate，veh／h	57	0	86	26	0	36		98	2362	26	26	2863
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％	5	2	5	2	2	2		5	5	2	2	5
Cap，veh／h	180	0	125	75	14	53		123	3626	40	46	3331
Arrive On Green	0.08	0.00	0.08	0.08	0.00	0.08		0.07	0.71	0.71	0.03	0.67
Sat Flow，veh／h	1334	0	1547	298	177	657		1739	5083	56	1781	4985
Grp Volume（v），veh／h	57	0	86	62	0	0		98	1543	845	26	2863
Grp Sat Flow（s），veh／h／ln	1334	0	1547	1132	0	0		1739	1662	1816	1781	1662
Q Serve（g＿s），s	0.0	0.0	5.4	1.8	0.0	0.0		5.5	24.8	24.9	1.4	44.8
Cycle Q Clear（g＿c），s	4.1	0.0	5.4	6.0	0.0	0.0		5.5	24.8	24.9	1.4	44.8
Prop In Lane	1.00		1.00	0.42		0.58		1.00		0.03	1.00	
Lane Grp Cap（c），veh／h	180	0	125	143	0	0		123	2371	1295	46	3331
V／C Ratio（X）	0.32	0.00	0.69	0.43	0.00	0.00		0.80	0.65	0.65	0.57	0.86
Avail Cap（c＿a），veh／h	316	0	279	287	0	0		157	2371	1295	89	3331
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	0.00	1.00	1.00	0.00	0.00		1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	44.1	0.0	44.7	44.8	0.0	0.0		45.8	7.7	7.7	48.2	12.9
Incr Delay（d2），s／veh	1.0	0.0	6.5	2.1	0.0	0.0		19.5	1.4	2.6	10.6	3.1
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／In	1.4	0.0	2.3	1.6	0.0	0.0		3.0	7.1	8.2	0.8	14.1
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	45.1	0.0	51.2	46.9	0.0	0.0		65.3	9.1	10.2	58.7	16.1
LnGrp LOS	D	A	D	D	A	A		E	A	B	E	B
Approach Vol，veh／h		143			62				2486			2936
Approach Delay，s／veh		48.8			46.9				11.7			16.3
Approach LOS		D			D				B			B
Timer－Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ），s	8.6	77.3		14.1	13.1	72.8		14.1				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting（Gmax），s	5.0	59.0		18.0	9.0	55.0		18.0				
Max Q Clear Time（g＿c＋11），s	3.4	26.9		7.4	7.5	46.8		8.0				
Green Ext Time（p＿c），s	0.0	23.0		0.4	0.0	7.9		0.1				
Intersection Summary												
HCM 6th Ctrr Delay			15.4									
HCM 6th LOS			B									

Notes

User approved ignoring U－Turning movement．

Movement	SBR
Lâde Configurations	7'
Traffic Volume (veh/h)	45
Future Volume (veh/h)	45
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1826
Adj Flow Rate, veh/h	47
Peak Hour Factor	0.95
Percent Heavy Veh, \%	5
Cap, veh/h	1034
Arrive On Green	0.67
Sat Flow, veh/h	1547
Grp Volume(v), veh/h	47
Grp Sat Flow(s), veh/h/ln	1547
Q Serve(g_s), s	1.0
Cycle Q Clear(g_c), s	1.0
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	1034
V/C Ratio(X)	0.05
Avail Cap(c_a), veh/h	1034
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	5.7
Incr Delay (d2), s/veh	0.1
Initial Q Delay(d3),s/veh	0.0
\%ile BackOfQ(50\%),veh/ln	0.3
Unsig. Movement Delay, s/veh	
LnGrp Delay(d),s/veh	5.8
LnGrp LOS	A
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	

Platoon blocked, \%
Mov Cap-1 Maneuver - $-\sim 166 \quad-\quad-\sim 99 \sim 74 \quad-\quad-\quad \sim-5 \sim-5 \quad-\quad$ -

Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach	EB	WB	NB	SB
HCM Control Delay, S\$ 520.9	$\$ 541$	9.4		
HCM LOS	F	F		

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	~ 74	-	-	166	99	+	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

Approach	WB	NB	SB
HCM Control Delay, s	105.4	7.5	78.4

Minor Lane/Major Mvmt	NBL	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	159	-	95	~33	-	
HCM Lane V/C Ratio	1.046	-	- 0.709	3.892	-	
HCM Control Delay (s)	141.7	-	- 105.91	574.1	-	
HCM Lane LOS	F	-	F	F	-	
HCM 95th \%tile Q(veh)	8.4	-	3.6	15.1	-	
Notes						
\sim : Volume exceeds capacity	\$: Delay exceeds 300s +: Computation Not Defined					*: All major volume in platoon

Notes

User approved ignoring U-Turning movement.

Movement	SBR
Lâde Configurations	「
Traffic Volume (veh/h)	98
Future Volume (veh/h)	98
Initial $Q(Q b)$, veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1826
Adj Flow Rate, veh/h	103
Peak Hour Factor	0.95
Percent Heavy Veh, \%	5
Cap, veh/h	953
Arrive On Green	0.62
Sat Flow, veh/h	1547
Grp Volume(v), veh/h	103
Grp Sat Flow(s), veh/h/ln	1547
Q Serve(g_s), s	2.5
Cycle Q Clear(g_c), s	2.5
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	953
V/C Ratio(X)	0.11
Avail Cap(c_a), veh/h	953
HCM Platoon Ratio	1.00
Upstream Filter(l)	1.00
Uniform Delay (d), s/veh	7.1
Incr Delay (d2), s/veh	0.2
Initial Q Delay(d3),s/veh	0.0
\%ile BackOfQ(50\%),veh/ln	0.8
Unsig. Movement Delay, s/veh	
LnGrp Delay(d),s/veh	7.3
LnGrp LOS	A
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	

	$\stackrel{*}{ }$	\rightarrow	\downarrow	7		4	\dagger	4	4	\％	（	$\frac{1}{\dagger}$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations		\uparrow	「		\＆			\％	种险		${ }^{1 /}$	种
Traffic Volume（veh／h）	44	0	59	20	0	28	56	77	967	20	20	1174
Future Volume（veh／h）	44	0	59	20	0	28	56	77	967	20	20	1174
Initial Q（Qb），veh	0	0	0	0	0	0		0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00		1.00		1.00	1.00	
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No				No			No
Adj Sat Flow，veh／h／ln	1811	1870	1811	1870	1870	1870		1811	1811	1870	1870	1811
Adj Flow Rate，veh／h	46	0	62	21	0	29		81	1018	21	21	1236
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％	6	2	6	2	2	2		6	6	2	2	6
Cap，veh／h	242	0	119	118	12	61		106	2982	61	44	2773
Arrive On Green	0.08	0.00	0.08	0.08	0.00	0.08		0.06	0.60	0.60	0.02	0.56
Sat Flow，veh／h	1580	0	1535	423	150	790		1725	4986	103	1781	4944
Grp Volume（v），veh／h	46	0	62	50	0	0		81	673	366	21	1236
Grp Sat Flow（s），veh／h／ln	1580	0	1535	1363	0	0		1725	1648	1793	1781	1648
Q Serve（g＿s），s	0.0	0.0	2.3	0.8	0.0	0.0		2.8	6.2	6.2	0.7	8.8
Cycle Q Clear（g＿c），s	1.5	0.0	2.3	2.3	0.0	0.0		2.8	6.2	6.2	0.7	8.8
Prop In Lane	1.00		1.00	0.42		0.58		1.00		0.06	1.00	
Lane Grp Cap（c），veh／h	242	0	119	191	0	0		106	1971	1072	44	2773
V／C Ratio（X）	0.19	0.00	0.52	0.26	0.00	0.00		0.76	0.34	0.34	0.48	0.45
Avail Cap（c＿a），veh／h	550	0	460	518	0	0		172	1971	1072	148	2773
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	1.00	1.00	0.00	0.00		1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	26.2	0.0	26.6	26.5	0.0	0.0		27.7	6.1	6.1	28.9	7.7
Incr Delay（d2），s／veh	0.4	0.0	3.5	0.7	0.0	0.0		10.6	0.5	0.9	7.9	0.5
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.6	0.0	0.9	0.7	0.0	0.0		1.4	1.6	1.8	0.4	2.3
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	26.6	0.0	30.1	27.3	0.0	0.0		38.3	6.6	7.0	36.8	8.2
LnGrp LOS	C	A	C	C	A	A		D	A	A	D	A
Approach Vol，veh／h		108			50				1120			1297
Approach Delay，s／veh		28.6			27.3				9.0			8.6
Approach LOS		C			C				A			A

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	7.5	41.9	10.6	9.7	39.7	10.6
Change Period（Y＋Rc），s	6.0	6.0	6.0	6.0	6.0	6.0
Max Green Setting（Gmax），s	5.0	19.0	18.0	6.0	18.0	18.0
Max Q Clear Time（g＿c＋11），s	2.7	8.2	4.3	4.8	10.8	4.3
Green Ext Time（p＿c），s	0.0	4.7	0.3	0.0	4.4	0.1

Intersection Summary

HCM 6th Ctrl Delay	10.0
HCM 6th LOS	A

Notes
User approved ignoring U－Turning movement．

Movement	SBR
Lâde Configurations	「
Traffic Volume (veh/h)	38
Future Volume (veh/h)	38
Initial $Q(Q b)$, veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1811
Adj Flow Rate, veh/h	40
Peak Hour Factor	0.95
Percent Heavy Veh, \%	6
Cap, veh/h	861
Arrive On Green	0.56
Sat Flow, veh/h	1535
Grp Volume(v), veh/h	40
Grp Sat Flow(s), veh/h/ln	1535
Q Serve(g_s), s	0.7
Cycle Q Clear(g_c), s	0.7
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	861
V/C Ratio(X)	0.05
Avail Cap(c_a), veh/h	861
HCM Platoon Ratio	1.00
Upstream Filter(l)	1.00
Uniform Delay (d), s/veh	5.9
Incr Delay (d2), s/veh	0.1
Initial Q Delay(d3),s/veh	0.0
\%ile BackOfQ(50\%),veh/ln	0.2
Unsig. Movement Delay, s/veh	
LnGrp Delay(d),s/veh	6.0
LnGrp LOS	A
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	

	\dagger	\rightarrow		7			\dagger	4	\uparrow	p		\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations		\uparrow	7		\$			\%			\%	个个4
Traffic Volume (veh/h)	58	0	112	27	0	16	103	76	1204	27	27	989
Future Volume (veh/h)	58	0	112	27	0	16	103	76	1204	27	27	989
Initial $Q(Q b)$, veh	0	0	0	0	0	0		0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00		1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No				No			No
Adj Sat Flow, veh/h/ln	1811	1870	1811	1870	1870	1870		1811	1811	1870	1870	1811
Adj Flow Rate, veh/h	61	0	118	28	0	17		80	1267	28	28	1041
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	6	2	6	2	2	2		6	6	2	2	6
Cap, veh/h	292	0	173	167	21	55		106	2768	61	55	2600
Arrive On Green	0.11	0.00	0.11	0.11	0.00	0.11		0.06	0.56	0.56	0.03	0.53
Sat Flow, veh/h	1522	0	1535	617	188	489		1725	4977	110	1781	4944
Grp Volume(v), veh/h	61	0	118	45	0	0		80	839	456	28	1041
Grp Sat Flow(s),veh/h/n	1522	0	1535	1295	0	0		1725	1648	1791	1781	1648
Q Serve(g_s), s	0.0	0.0	4.4	0.3	0.0	0.0		2.7	9.1	9.1	0.9	7.6
Cycle Q Clear (g_c), s	1.9	0.0	4.4	2.2	0.0	0.0		2.7	9.1	9.1	0.9	7.6
Prop In Lane	1.00		1.00	0.62		0.38		1.00		0.06	1.00	
Lane Grp Cap (c), veh/h	292	0	173	243	0	0		106	1833	996	55	2600
V/C Ratio(X)	0.21	0.00	0.68	0.18	0.00	0.00		0.76	0.46	0.46	0.51	0.40
Avail Cap(c_a), veh/h	553	0	460	501	0	0		172	1833	996	148	2600
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	1.00	1.00	0.00	0.00		1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.4	0.0	25.6	24.4	0.0	0.0		27.7	7.9	7.9	28.6	8.5
Incr Delay (d2), s/veh	0.4	0.0	4.7	0.4	0.0	0.0		10.4	0.8	1.5	7.0	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.8	0.0	1.7	0.6	0.0	0.0		1.3	2.5	2.9	0.5	2.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	24.8	0.0	30.2	24.7	0.0	0.0		38.1	8.8	9.4	35.6	9.0
LnGrp LOS	C	A	C	C	A	A		D	A	A	D	A
Approach Vol, veh/h		179			45				1375			1156
Approach Delay, s/veh		28.4			24.7				10.7			9.5
Approach LOS		C			C				B			A
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	7.9	39.4		12.8	9.7	37.5		12.8				
Change Period ($Y+R \mathrm{Rc}$), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	5.0	19.0		18.0	6.0	18.0		18.0				
Max Q Clear Time (g_c+11), s	2.9	11.1		6.4	4.7	9.6		4.2				
Green Ext Time (p_c), s	0.0	4.7		0.5	0.0	4.4		0.1				
Intersection Summary												
HCM 6th Ctrr DelayHCM 6th LOS			11.6									
			B									

Notes

User approved ignoring U-Turning movement.

Movement	SBR
Lâde Configurations	「
Traffic Volume (veh/h)	83
Future Volume (veh/h)	83
Initial $Q(Q b)$, veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1811
Adj Flow Rate, veh/h	87
Peak Hour Factor	0.95
Percent Heavy Veh, \%	6
Cap, veh/h	807
Arrive On Green	0.53
Sat Flow, veh/h	1535
Grp Volume(v), veh/h	87
Grp Sat Flow(s),veh/h/ln	1535
Q Serve(g_s), s	1.7
Cycle Q Clear(g_c), s	1.7
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	807
V/C Ratio(X)	0.11
Avail Cap(c_a), veh/h	807
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	7.2
Incr Delay (d2), s/veh	0.3
Initial Q Delay(d3),s/veh	0.0
\%ile BackOfQ(50\%),veh/ln	0.5
Unsig. Movement Delay, s/veh	
LnGrp Delay(d),s/veh	7.4
LnGrp LOS	A
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	

Approach	WB	NB	SB
HCM Control Delay, s	0	10.8	1.2

Minor Lane/Major Mvmt	NBL	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	101	-	-	-	155	-
HCM Lane V/C Ratio	1.199	-	-	-0.475	-	
HCM Control Delay (s)	231	-	-	0	47.7	-
HCM Lane LOS	F	-	-	A	E	-
HCM 95th \%tile Q(veh)	8.1	-	-	-	2.2	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

Notes

User approved ignoring U-Turning movement.

Movement	SBR
Lâde Configurations	7'
Traffic Volume (veh/h)	45
Future Volume (veh/h)	45
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1826
Adj Flow Rate, veh/h	47
Peak Hour Factor	0.95
Percent Heavy Veh, \%	5
Cap, veh/h	1034
Arrive On Green	0.67
Sat Flow, veh/h	1547
Grp Volume(v), veh/h	47
Grp Sat Flow(s), veh/h/ln	1547
Q Serve(g_s), s	1.0
Cycle Q Clear(g_c), s	1.0
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	1034
V/C Ratio(X)	0.05
Avail Cap(c_a), veh/h	1034
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	5.7
Incr Delay (d2), s/veh	0.1
Initial Q Delay(d3),s/veh	0.0
\%ile BackOfQ(95\%),veh/ln	0.6
Unsig. Movement Delay, s/veh	
LnGrp Delay(d),s/veh	5.8
LnGrp LOS	A
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	

Approach	WB	NB	SB
HCM Control Delay, s	105.4	29.7	78.4
HCM LOS	F		

Minor Lane/Major Mvmt	NBL	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	159	-	95	~33	-	
HCM Lane V/C Ratio	1.648	-	- 0.709	3.892	-	
HCM Control Delay (s)	\$ 368.7	-	- 105.91	574.1	-	
HCM Lane LOS	F	-	F	F	-	
HCM 95th \%tile Q(veh)	18.3	-	3.6	15.1	-	
Notes						
\sim Volume exceeds capacity	\$: Delay exceeds 300s +: Computation Not Defined					*: All major volume in platoon

	$\stackrel{ }{*}$	\rightarrow		7		4	\dagger	4	\uparrow	p		\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations		\uparrow	F		¢			\％	个中t		\％	个种
Traffic Volume（veh／h）	68	0	132	32	0	16	122	89	2710	32	32	2183
Future Volume（veh／h）	68	0	132	32	0	16	122	89	2710	32	32	2183
Initial $\mathrm{Q}(\mathrm{Qb})$ ，veh	0	0	0	0	0	0		0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00		1.00		1.00	1.00	
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No				No			No
Adj Sat Flow，veh／h／ln	1826	1870	1826	1870	1870	1870		1826	1826	1870	1870	1826
Adj Flow Rate，veh／h	72	0	139	34	0	17		94	2853	34	34	2298
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh，\％	5	2	5	2	2	2		5	5	2	2	5
Cap，veh／h	246	0	178	129	13	38		120	3317	39	57	3071
Arrive On Green	0.11	0.00	0.11	0.11	0.00	0.11		0.07	0.65	0.65	0.03	0.62
Sat Flow，veh／h	1448	0	1547	545	113	329		1739	5078	60	1781	4985
Grp Volume（v），veh／h	72	0	139	51	0	0		94	1863	1024	34	2298
Grp Sat Flow（s），veh／h／ln	1448	0	1547	987	0	0		1739	1662	1815	1781	1662
Q Serve（g＿s），s	0.0	0.0	7.9	1.9	0.0	0.0		4.8	39.8	40.4	1.7	29.6
Cycle Q Clear（g＿c），s	4.1	0.0	7.9	6.0	0.0	0.0		4.8	39.8	40.4	1.7	29.6
Prop In Lane	1.00		1.00	0.67		0.33		1.00		0.03	1.00	
Lane Grp Cap（c），veh／h	246	0	178	180	0	0		120	2171	1186	57	3071
V／C Ratio（X）	0.29	0.00	0.78	0.28	0.00	0.00		0.78	0.86	0.86	0.60	0.75
Avail Cap（c＿a），veh／h	365	0	309	294	0	0		232	2171	1186	99	3071
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	1.00	1.00	0.00	0.00		1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	37.0	0.0	38.7	38.1	0.0	0.0		41.2	12.3	12.4	43.0	12.3
Incr Delay（d2），s／veh	0.7	0.0	7.3	0.9	0.0	0.0		10.6	4.7	8.4	9.8	1.7
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	2.7	0.0	5.9	2.0	0.0	0.0		4.2	18.6	21.7	1.6	14.4
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	37.7	0.0	46.0	38.9	0.0	0.0		51.8	17.0	20.8	52.8	14.0
LnGrp LOS	D	A	D	D	A	A		D	B	C	D	B
Approach Vol，veh／h		211			51				2981			2435
Approach Delay，s／veh		43.2			38.9				19.4			14.3
Approach LOS		D			D				B			B
Timer－Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， s	8.9	64.8		16.3	12.2	61.4		16.3				
Change Period（ $Y+R \mathrm{C}$ ），s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting（Gmax），s	5.0	49.0		18.0	12.0	42.0		18.0				
Max Q Clear Time（g＿c＋1），s	3.7	42.4		9.9	6.8	31.6		8.0				
Green Ext Time（p＿c），s	0.0	6.3		0.5	0.1	9.1		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			18.3									
HCM 6th LOS			B									

Notes

User approved ignoring U－Turning movement．

Movement	SBR
Lâde Configurations	「
Traffic Volume (veh/h)	98
Future Volume (veh/h)	98
Initial $Q(Q b)$, veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1826
Adj Flow Rate, veh/h	103
Peak Hour Factor	0.95
Percent Heavy Veh, \%	5
Cap, veh/h	953
Arrive On Green	0.62
Sat Flow, veh/h	1547
Grp Volume(v), veh/h	103
Grp Sat Flow(s), veh/h/ln	1547
Q Serve(g_s), s	2.5
Cycle Q Clear(g_c), s	2.5
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	953
V/C Ratio(X)	0.11
Avail Cap(c_a), veh/h	953
HCM Platoon Ratio	1.00
Upstream Filter(l)	1.00
Uniform Delay (d), s/veh	7.1
Incr Delay (d2), s/veh	0.2
Initial Q Delay(d3),s/veh	0.0
\%ile BackOfQ(95\%),veh/ln	1.4
Unsig. Movement Delay, s/veh	
LnGrp Delay(d),s/veh	7.3
LnGrp LOS	A
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	

