CERTIFICATION

AGENCY: Florida Department of Transportation District One 801 North Broadway Avenue Bartow, Florida 33831-1249

I hereby certify that I am a registered professional engineer in the State of Florida and that I have supervised the preparation of, and approved the analysis, findings, opinions, conclusions and technical advice hereby reported for:

REPORT:	SR 72/Talon Boulevard/Ibis Street Intersection Control Evaluation (ICE) - Stage 1
PROJECT:	SR 72 Project Development and Environment (PD&E) Study
LOCATION:	SR 72 from East of I-75 to Lorraine Road Sarasota County, Florida
ROADWAY ID	: 17070000

MILEPOST No: 5.708

FPID No.: 444634-1-22-01

I acknowledge that the procedures and references used to develop the information contained in this memorandum are standard to the professional practice of transportation engineering as applied through professional judgement and experience.

Engineer in Responsible Charge:	Anastasiya A. Senyushkina	× 5
Professional Registration No.:	82191	No. 82191
Date:	12/7/2023	TO STATE OF
		MAL MAL

AIM Engineering & Surveying, Inc.

Tampa Office 201 E. Kennedy Boulevard, Suite 1800 Tampa, Florida 33602 813-627-4144 www.aimengr.com

Date:	December 7, 2023
То:	Steven Andrews, P.E. – FDOT District One DEMO Project Manager
From:	Greg Root/Anastasiya Senyushkina, P.E.
Subject:	SR 72 at Talon Boulevard/Ibis Street Intersection (Sarasota County) Stage 1+ Intersection Control Evaluation

INTRODUCTION/PROJECT BACKGROUND

This memorandum documents the Intersection Control Evaluation (ICE) conducted for the Talon Boulevard/Ibis Street intersection. This analysis was conducted in support of the SR 72 Project Development & Environment (PD&E) Study from east of I-75 to Lorraine Road in Sarasota County. The length of this study corridor is approximately 2.7 miles. This PD&E study is evaluating the costs and impacts of widening (i.e., four-laning) SR 72 from Hummingbird Avenue to Lorraine Road. This PD&E study is also looking to reduce the posted speeds/target speeds within the corridor. The PD&E study goals are to determine the location and conceptual design of the improvement(s) that satisfy the purpose and need for the project, while also minimizing the impacts to the natural and social environment and satisfying the requirements of the National Environmental Policy Act (NEPA). This memorandum documents the Stage 1 CAP-X and SPICE analyses, as well as the more detailed traffic operations analyses conducted using the SIDRA software.

EXISTING INTERSECTION CHARACTERISTICS

This intersection is a four-legged signalized intersection. The traffic signal was installed in mid-2022. Talon Boulevard is the north leg of this intersection and provides access to Red Hawk Reserve (a gated residential subdivision). Single family homes are located in both the northwest and northeast quadrants of the intersection. Ibis Street is the south leg of this intersection and extends south of Hawkins Road. This road provides access to single family homes on the east side, as well as Twin Lakes Park on the west side. This recreational complex includes facilities for baseball/softball, soccer and lacrosse, as well as a walking trail. The land in the southwest quadrant of the intersection is part of Twin Lakes Park. An aerial image depicting the Talon Boulevard/Ibis Street intersection is provided in **Figure 1**, which is included in **Appendix A**. The posted speed limit on SR 72 in the vicinity of this intersection is 45 miles per hour (mph). The posted speed limit on Ibis Street is 30 mph. SR 72 is a two-lane undivided roadway with 12-foot travel lanes and five-foot paved shoulders both west and east of Talon Boulevard/Ibis Street. There is a sidewalk on the north side of SR 72 and on both sides of Talon Boulevard. There is also a 10-foot path on the west side of Ibis Street. The context classification for the study corridor is C3R (Suburban Residential).

Crash data from Signal Four Analytics was provided by District One for the years 2017 through 2021. The crash data is included in Appendix B. The intersection has experienced 21 crashes over this fiveyear period, resulting in 21 injuries and no fatalities. The most prevalent crash types are angle crashes (16) and rear-end crashes (3). The angle crashes were associated with left-turn movements. There were no crashes involving bicyclists or pedestrians.

INTERSECTION CONTROL EVALUATION

The proposed typical section includes four 11-foot travel lanes (two in each direction), a 22-foot median and 12-foot shared use paths on both sides of the roadway. The FDOT-approved design speed and target speed for the proposed SR 72 typical section in this area is 35 mph. This speed is 10 mph lower than the existing posted speed limit. The following alternative intersection control strategies were initially analyzed for this intersection:

- Conventional Traffic Signal
- Signalized Restricted Crossing U-Turn (RCUT)
- Signalized Thru-Cut
- Median U-Turn (MUT)
- Partial MUT
- Bowtie
- Two-lane (SR 72) x one-lane (Talon Boulevard/Ibis Street) roundabout
- Two-lane x two-lane roundabout •

The opening year (2030) and design year (2050) Average Annual Daily Traffic (AADT) volumes documented in the SR 72 Project Traffic Analysis Report are provided in Appendix C along with the 2050 a.m. and p.m. peak hour volumes documented in this same report. The results of the CAP-X and SPICE analyses are summarized in Table 1. The CAP-X and SPICE analysis summary sheets for this intersection are provided in Appendix D.

	2050 V/	C Ratios	Life-Cycle Crashes		SSI Scores	
					Opening	Design
Intersection Type	AM Peak Hour	PM Peak Hour	Total	Fatal & Injury	Year	Year
Conventional Signalized Intersection	0.63	0.69	163	57	97	91
Signalized RCUT	0.81	0.85	359	83	98	96
Signalized Thru-Cut	0.60	0.65	n/a	n/a	97	92
Median U-Turn	0.89	0.91	139	40	98	95
Partial MUT	1.17	1.13	n/a	n/a	n/a	n/a
Bowtie	1.05	1.08	n/a	n/a	97	92
Roundabout (2EW x 1NS)	1.58	1.59	n/a	n/a	n/a	n/a
Roundabout (2EW x 2NS)	1.56	1.54	235	44	99	97
Lowest number of crashes of all alternatives analyzed n/a = No Safety Performance Function (SPF) available						

n/a = No Safety Performance Function (SPF) available

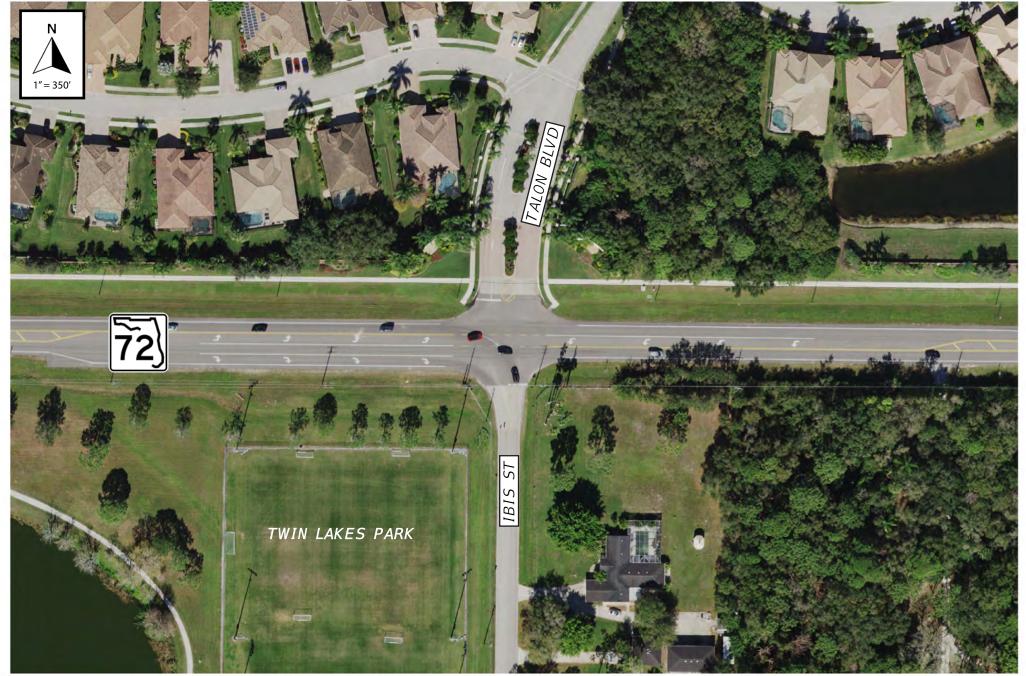
The conventional signalized intersection, signalized RCUT, signalized thru-cut, MUT, and PMUT alternatives would not provide positive speed control. Based on the second lowest number of fatal and injury crashes estimated to occur with the two-lane by two-lane roundabout alternative, the current construction of the Proctor Road/Dove Avenue roundabout to the east, the FDOT-approved target speed of 35 mph for SR 72 west of Proctor Road/Dove Avenue, and the highest SSI score; the two-lane by two-lane roundabout alternative was advanced for more detailed traffic analysis.

Design year (2050) peak hour SIDRA analyses were subsequently conducted to determine the optimal geometry for the roundabout and the results are summarized in **Table 2**. With one exception, all of the intersection approaches are projected to operate under capacity during both peak hours. The westbound approach is projected to operate with a v/c ratio equal to 1.12 in the a.m. peak hour. Additional interim year SIDRA analyses were conducted and it was determined the capacity of the westbound approach would be exceeded in the year 2048. The design year SIDRA analysis summary sheets are provided in **Appendix E**.

Talor	Talon Boulevard/Ibis Street Roundabout					
	AM Peak	Hour				
Intersection						
Approach	V/C Ratio ⁽¹⁾	Avg. Delay	LOS			
Northbound	0.92	47.3	Е			
Southbound	0.19	20.9	С			
Westbound	1.12	100.3	F			
Eastbound	0.70	12.7	В			
Overall	1.12	48.6	E			
PM Peak Hour						
Intersection						
Approach	V/C Ratio ⁽¹⁾	Avg. Delay	LOS			
Northbound	0.92	52.0	F			
Southbound	0.14	13.6	В			
Westbound	0.75	24.0	С			
Eastbound	0.81	16.9	С			
Overall	0.92	26.5	D			

⁽¹⁾ Highest volume-to-capacity ratio of any approach movements

An initial geometric improvement concept was developed for this alternative and is provided in **Appendix F**. This roundabout alternative requires some additional right-of-way in the northwest and northeast quadrants of the intersection but does not result in any residential or business relocations.


RECOMMENDED INTERSECTION CONTROL STRATEGY

The implementation of a two-lane roundabout is expected to provide positive speed control in this area and help to facilitate the 35 mph design speed/target speed associated with the proposed SR 72 typical section. Reduced vehicle speeds will provide additional safety benefits for the older driving population that travels within the study corridor. The roundabout is projected to have the highest SSI score and the second lowest number of fatal and injury crashes and is expected to provide adequate capacity on all intersection approaches during the a.m. peak hour until the year 2048. Adequate capacity is projected for all four approaches in the p.m. peak hour through the year 2050. The implementation of a roundabout at this location is consistent with the roundabouts that were recently constructed further east on SR 72 at the Proctor Road/Dove Avenue and Lorraine Road intersections. Consequently, the PD&E study recommends a two-lane roundabout for the Talon Boulevard/Ibis Street intersection. A Benefit/Cost analysis, required for federally funded projects, will be conducted for this intersection using updated information during the final design phase of the project.

Appendix A

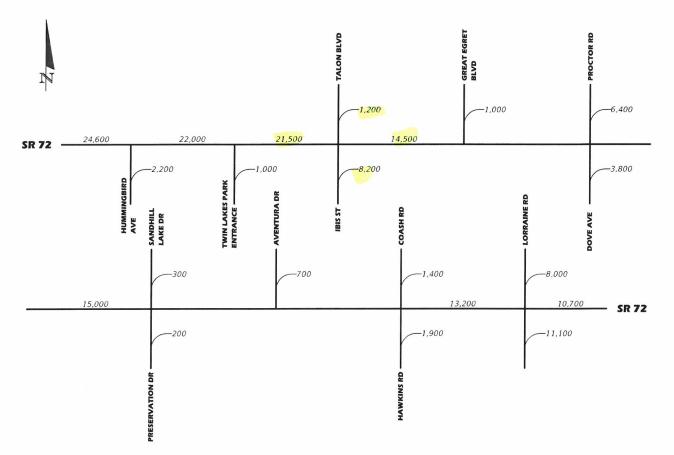
Existing Intersection Aerial

Figure 1: Existing SR 72 / Talon Boulevard / Ibis Street Intersection

Appendix B

Historic Crash Data

LOCATION	CRASH_YEAR	ON_STREET_RO STREET_ADDRESS_NU FE	ET_FROM_I DIRECTION_	FF FROM_INTERSECTION_OF
Ibis	2020	IBIS AVE	12 South	CLARK RD
Ibis	2021	IBIS AVE	0	SR72
Ibis	2021	CLARK RD	0	TALON BLVD
Ibis	2021	IBIS AVE	0	CLARK RD
Ibis	2017	SR-72 (CLARK RD)	0	IBIS ST
Ibis	2017	SR72 (CLARK RD.)	0	IBIS ST
Ibis	2017	SR 72	0	IBIS ST
Ibis	2017	CLARK RD	0	IBIS ST
Ibis	2017	SR72 (CLARK RD.)	0	IBIS ST.
Ibis	2018	SR-72(CLARK RD)	0	IBIS ST
Ibis	2018	IBIS AVE	0	CLARK RD
Ibis	2019	STATE ROAD 72 (CLARK ROAD)	49 East	TALON BLVD
Ibis	2019	SR 72 (CLARK RD)	0	IBIS ST
Ibis	2020	SR 72 (CLARK ROAD)	0	IBIS STREET
Ibis	2021	SR 72 (CLARK RD)	0	IBIS STREET
Ibis	2018	IBIS AVE	230 South	CLARK RD
Ibis	2018	CLARK RD	0	IBIS AVE
Ibis	2019	CLARK RD	10 West	IBIS AVE
Ibis	2019	IBIS AVE	0	CLARK RD
Ibis	2020	IBIS AVE	28 South	CLARK RD
e Ibis	2020	CLARK RD	35 East	IBIS AVE


Daylight Clear Dry Angle On Roadway Intersection Left Leaving Left Tur Daylight Clear Dry Angle On Roadway Intersection Left Leaving Left Tur	ı
Daylight Clear Dry Angle On Ready Jetersection Left Leaving Left Tur	
Paylight Cical Diy Angre Oli Koduway intersection Left Leaving Left full	ı
Dawn Clear Dry Angle On Roadway Intersection Left Leaving Left Tur	
Daylight Clear Dry Angle On Roadway Intersection Left Leaving Left Tur	ı
Dusk Clear Dry Angle On Roadway Non-Junction Left Leaving Left Tur	ı
Daylight Clear Dry Angle On Roadway Intersection Left Leaving Left Tur	ı
Dark - Not Lighted Clear Dry Angle On Roadway Intersection Left Leaving Left Tur	า
Daylight Clear Dry Angle On Roadway Intersection Left Entering Left Tur	ı
Daylight Clear Dry Angle On Roadway Intersection Left Leaving Left Tur	ı
Daylight Clear Dry Angle On Roadway Intersection Left Leaving Left Tur	า
Daylight Clear Dry Front to Rear On Roadway Intersection Rear End Rear En	ł
Daylight Clear Dry Front to Rear On Roadway Intersection-Re Rear End Rear En	ł
Dark - Lighted Cloudy Wet Angle On Roadway Intersection Left Leaving Left Tur	ı
Daylight Clear Dry Angle On Roadway Intersection Left Leaving Left Tur	ı
Daylight Clear Dry Angle On Roadway Intersection Left Leaving Left Tur	ı
Daylight Rain Wet Front to Rear On Roadway Non-Junction Rear End Rear En	ł
Daylight Cloudy Dry Angle On Roadway Intersection Left Leaving Left Tur	ı
Daylight Clear Dry Angle On Roadway Intersection Left Leaving Left Tur	า
Daylight Cloudy Dry Angle On Roadway Intersection Left Leaving Left Tur	ı
Dark - Not Lighted Clear Dry Angle On Roadway Intersection-Re Right Angle/ Front to Side Angle	
Dark - Not Lighted Clear Dry On Roadway Through Roadw Single Vehicle/ Hit Animal Other	

IN	S4_CRASH_SEVERIT S4_INJURY_COUNT		S4
	No Injury	0	
	No Injury	0	
	No Injury	0	
	Injury	1	
	Injury	4	
	No Injury	0	
	No Injury	0	
	No Injury	0	
	Injury	3	
	No Injury	0	
	No Injury	0	
	Injury	5	
	Serious Injury	3	
	No Injury	0	
	No Injury	0	
	Injury	4	
	No Injury	0	
	No Injury	0	
	No Injury	0	
	Injury	1	
	No Injury	0	

¹ BICYCLIST_COUNT	S4_PEDESTRIAN_COUN	TΙ
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0

Appendix C

Opening Year and Design Year Traffic Volumes

FIGURE 3-3: OPENING YEAR (2030) AADT VOLUMES - NO-BUILD ALTERNATIVE

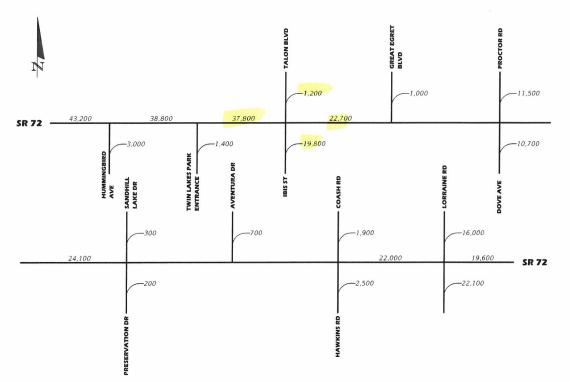


FIGURE 3-2: DESIGN YEAR (2050) AADT VOLUMES - BUILD ALTERNATIVE

FIGURE 3-7: DESIGN YEAR (2050) AM PEAK HOUR VOLUMES - BUILD ALTERNATIVE

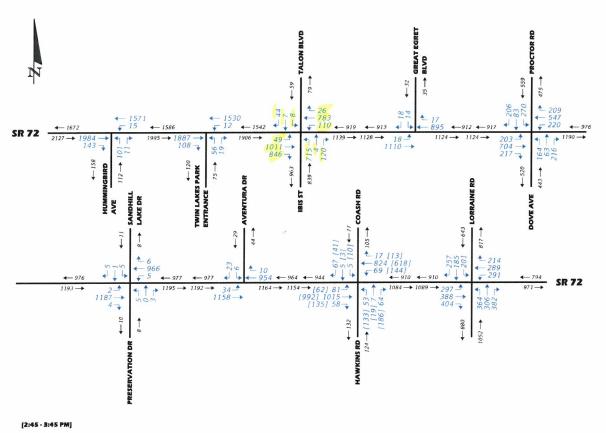


FIGURE 3-8: DESIGN YEAR (2050) PM PEAK HOUR VOLUMES - BUILD ALTERNATIVE

Design year weekend (i.e., Saturday) peak hour volumes were also estimated for the Twin Lakes Park entrance/exit and the Talon Boulevard/Ibis Street intersection for the Build Alternative. The methodology used to estimate the 2050 weekend peak hour volumes for these two intersections consisted of the following steps:

- Step 1 The 2022 weekday total peak hour entering volumes were calculated for both peak hours.
- Step 2 The 2050 weekday total peak hour entering volumes were calculated for both peak hours.
- Step 3 The overall growth in total peak hour weekday entering volumes was calculated for both peak hours and the average of these two values was calculated.
- Step 4 The 2022 weekend peak hour intersection approach volumes were multiplied by the average overall growth in total peak hour weekday entering volumes calculated in Step 3. This yielded estimates of the 2050 weekend peak hour intersection approach volumes.
- Step 5 The 2050 weekend peak hour intersection turning movement volumes were estimated by multiplying the 2050 weekend peak hour intersection approach volumes by the existing weekend peak hour turning movement percentages.

	DESIGN YEAR (2050) PEAK HOUR APPROACH TRUCK PERCENTAGES								
			A	И РЕАК НО	UR				
EI	EB LT EB		EB TH EB RT		E	EB APPROACH			
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %	
33	0.00	814	0.08	697	0.04	1544	93	6.0%	
W	B LT	WE	3 TH	WE	3 RT	V N	WB APPROACH		
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %	
125	0.05	995	0.05	8	0.00	1128	56	5.0%	
Ν	B LT	NB	TH	NB	B RT	N	IB APPROAC	CH	
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %	
846	0.02	6	0.00	105	0.09	957	26	2.8%	
SB LT SB TH SB RT		RT	SB APPROACH						
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %	
10	0.00	6	0.00	39	0.03	55	1	2.1%	
	PM PEAK HOUR								
EE	3 LT	EB	TH	EB RT		E	EB APPROACH		
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %	
49	0.00	1011	0.02	846	0.02	1906	37	1.9%	
W	B LT	WE	3 TH	WE	3 RT	W	WB APPROACH		
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %	
110	0.00	783	0.02	26	0.02	919	16	1.8%	
N	NB LT NB TH		ТН	NB RT		NB APPROACH			
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %	
715	0.02	4	0.00	120	0.00	839	14	1.7%	
SE	3 LT	SB	TH	SB	RT	S	B APPROAC	Н	
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %	
8	0.00	7	0.00	44	0.00	59	0	0.0%	

TALON BLVD/IBIS STREET INTERSECTION DESIGN YEAR (2050) PEAK HOUR APPROACH TRUCK PERCENTAGES

	Year				
Mvmt	2050	2030	2045	2047	2048
EB LT	33	24	31	32	32
EB TH	814	617	765	784	794
EB RT	697	320	603	640	659
WB LT	125	51	107	114	118
WB TH	995	649	909	943	960
WB RT	8	6	8	8	8
NB LT	846	335	718	769	795
NB TH	6	2	5	5	6
NB RT	105	38	88	95	98
SB LT	10	9	10	10	10
SB ТН	6	3	5	6	6
SB RT	39	38	39	39	39

Talon Boulevard/Ibis Street Intersection - AM Peak Hour Volumes

Appendix D

CAP-X and SPICE Analysis Summary Sheets

Capacity Analysis for Planning of Junctions

Detailed Report - Page 1 of 4

Project Name:	SR 72 PD&E Study from East of I-75 to Lorraine Road
Project Number:	FPID No. 444634-1-22-01
Location:	SR 72 at Talon Boulevard/Ibis Street
Date:	Design Year (2050) AM Peak Hour
Number of Intersection Legs:	4
Major Street Direction:	East-West

			Tra	ffic Volume D	emand			
			Volume	(Veh/hr)			Perce	nt (%)
	U-Turn	Le	eft	Thru	Right	Heavy \	/ehicles	Volume Growth
							001	0.000/
Eastbound	0	3	3	814	697	6.0	0%	0.00%
Westbound	0	12	25	995	8	5.0	0%	0.00%
Southbound	0	1	0	6	39	2.1	0%	0.00%
Northbound	0	84	46	6	105	2.8	0%	0.00%
Adjustment Factor	0.80	0.	95		0.85			
Suggested					0.85			
	Truck to	PCE Fa	ctor		Suggested =	= 2.00		2.00
FDC	OT Context Zone			C	3R-Suburban R	esidenti	al	
E-W / Cro	ssing East-West	Legs		Low	Low			Low
N-S / Cros	sing North-South	Legs		Low	Low			Low
			2-pha	se signal	Suggested =	1800		1800
	Lane Volume reshold		3-pha	se signal	Suggested =	1750		1750
			4-pha	se signal	Suggested =	1700		1700

Capacity Analysis for Planning of Junctions

Detailed Report - Page 2 of 4

Number o	of Lanes	for	No	n-ro	oun	dal	bou	t In	ters	sect	tion	S					
Number of Lanes for Non-roundabout Intersections Northbound Southbound Eastbound Westbound TYPE OF INTERSECTION Northbound Southbound Eastbound Westbound Traffic Signal FULL 2 1 1 1 1 Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6"Colspan="6																	
TTPE OF INTERSECTION	Sneet	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Traffic Signal	FULL	\angle	2	1	0	\square	0	1	1	\square	1	2	1	\angle	1	2	0
Median U-Turn	<u>E-W</u>	\checkmark	\checkmark	1	2	/	/	1	1	2	\square	2	1	1	\square	2	0
Signalized ThruCut	<u>E-W</u>	\checkmark	2	\square	1	/	1	\square	1	/	1	2	1	\checkmark	1	2	0
Number of Lanes for Interchanges																	
TYPE OF INTERCHANGE	Sheet	N	orth	bou	nd	So	outh	bou	nd	E	astk	oun	d	W	/estl	oour	nd
IT FE OF INTERCHANGE	Sheet	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Capacity Analy	/sis f	or	PI	an	ni	ng	0	f J	lur	1C ¹	tio	ns	5				

Detailed Report - Page 3 of 4

	Res	ults f	or No	on-rou	undal	bout	Inters	sectio	ons					
TYPE OF INTERSECTION	Sheet	Zoi (No	ne 1 orth)	-	ne 2 uth)	Zone 3	(East)	Zor (We	ne 4 est)	Zor (Cer	ne 5 nter)	Overall v/c	Ped Accomm	Bicycle
THE OF INTERSECTION	511661	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	Ratio	odations	
Traffic Signal	<u>FULL</u>	\checkmark	\nearrow	\nearrow	\nearrow	\nearrow				1067	<u>0.63</u>	0.63	5.05	4.71
Signalized Restricted Crossing U-Turn	<u>E-W</u>	1023	<u>0.57</u>	1455	<u>0.81</u>	1140	<u>0.63</u>	839	<u>0.47</u>	\checkmark		0.81	2.97	4.32
Median U-Turn	<u>E-W</u>	\checkmark	\nearrow	\nearrow		1158	<u>0.64</u>	995	<u>0.55</u>	1599	<u>0.89</u>	0.89	3.13	4.71
Signalized ThruCut	<u>E-W</u>	\checkmark	\nearrow	\nearrow		\checkmark		\checkmark		1042	<u>0.60</u>	0.60	3.88	4.66

Capacity Analysis for Planning of Junctions

Detailed Report - Page 4 of 4

						Resul	ts for F	Rounda	abouts						
TYPE OF	Zo	one 1 (Nor	th)	Z	one 3 (Eas	st)	Zo	one 2 (Sou	th)	Zo	one 4 (Wes	st)	Overall v/c	Ped	Bicycle
ROUNDABOUT	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Ratio	odations	Accomm odations
<u>1NS X 2EW</u>	<u>0.24</u>			<u>0.69</u>	<u>0.73</u>		<u>1.58</u>			<u>1.00</u>	<u>1.01</u>		1.58	4.89	4.62
<u>2 X 2</u>	<u>0.08</u>	<u>0.17</u>		<u>1.00</u>	<u>1.01</u>		<u>1.56</u>	<u>0.18</u>		<u>0.69</u>	<u>0.73</u>	\nearrow	1.56	4.60	4.54

				F	Resul	ts foi	· Inte	rchar	nges						
TYPE OF INTERCHANGE	Sheet	Zone 1 <u>Mi</u> CLV	•	Zone 2 Mi CLV	(Lt rg) V/C	Zor (Cti CLV		Zor (Ctı CLV	-	Zone 5 Mr CLV	rg) V/C	Zone 6 Mr CLV	(Rt g) V/C	Overall v/c Ratio	 Bicycle Accomm odations

Capacity Analysis for Planning of Junctions

Detailed Report - Page 1 of 4

Project Name:	SR 72 PD&E Study from East of I-75 to Lorraine Road
Project Number:	FPID No. 444634-1-22-01
Location:	SR 72 at Talon Boulevard/Ibis Street
Date:	Design Year (2050) PM Peak Hour
Number of Intersection Legs:	4
Major Street Direction:	East-West

			Tra	ffic Volume D	emand			
			Volume	(Veh/hr)			Perce	ent (%)
	U-Turn	Le	eft	Thru	Right	Heavy \	/ehicles	Volume Growth
Eastbound	0	4	9	1011	846	1.9	0%	0.00%
Westbound	0	11	10	783	26	1.8	0%	0.00%
Southbound	0	8	3	7	44	0.0	0%	0.00%
Northbound	0	7′	15	4	120	1.7	0%	0.00%
Adjustment Factor	0.80	0.	95		0.85			
Suggested	0.80	0.	95		0.85			
	Truck to	PCE Fa	ctor		Suggested =	: 2.00		2.00
FDC	OT Context Zone			С	3R-Suburban R	esidenti	al	
E-W / Cro	ssing East-West	Legs		Low	Low			Low
N-S / Cros	sing North-South	Legs		Low	Low			Low
			2-pha	se signal	Suggested =	1800		1800
	Lane Volume reshold		3-pha	se signal	Suggested =	1750		1750
			4-pha	se signal	Suggested =	1700		1700

Capacity Analysis for Planning of Junctions

Detailed Report - Page 2 of 4

Number o	of Lanes	for	No	n-re	oun	dal	bou	t In	ters	sect	tion	S					
Number of Lanes for Non-roundabout Intersections TYPE OF INTERSECTION Northbound Southbound Eastbound Westbound Traffic Signal FULL 2 1 1 1 1 2 1 Vestbound Traffic Signal FULL 2 1 1 1 2 1 V L Northbound Eastbound Westbound Traffic Signal FULL 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 <th c<="" td=""></th>																	
TTPE OF INTERSECTION	Sneet	U	L	Т	R	U	L	Т	R	υ	L	Т	R	U	L	Т	R
Traffic Signal																	
Median U-Turn	<u>E-W</u>	\checkmark	\checkmark	1	2	/	/	1	1	2		2	1	1	\square	2	0
Signalized ThruCut	<u>E-W</u>	\checkmark	2	\square	1	/	1	\square	1	/	1	2	1	\checkmark	1	2	0
Number of Lanes for Interchanges																	
TYPE OF INTERCHANGE	Sheet	No	orth	bou	nd	So	outh	bou	nd	E	astb	oun	d	W	/estl	oour	nd
TTPE OF INTERCHANGE	Sneet	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Capacity Analy	/sis f	or	PI	an	ni	ng	0	f J	Jur	1C'	tio	ns	5				

Detailed Report - Page 3 of 4

	Res	ults f	or No	on-rou	undal	bout	Inters	sectio	ons					
TYPE OF INTERSECTION	Sheet	Zor (No	ne 1 orth)	_	ne 2 uth)	Zone 3	8 (East)	Zor (We	ne 4 est)	Zor (Cer	ne 5 nter)	Overall v/c	Ped Accomm	Bicycle
THE OF INTERSECTION	511661	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	Ratio	odations	
Traffic Signal	<u>FULL</u>	\nearrow	\nearrow	\nearrow	\nearrow	\nearrow				1167	<u>0.69</u>	0.69	5.05	4.71
Signalized Restricted Crossing U-Turn	<u>E-W</u>	1092	<u>0.61</u>	1524	<u>0.85</u>	924	<u>0.51</u>	990	<u>0.55</u>	$\mathbf{>}$		0.85	2.97	4.32
Median U-Turn	<u>E-W</u>	\checkmark	\searrow	\nearrow	\nearrow	953	<u>0.53</u>	1121	<u>0.62</u>	1645	<u>0.91</u>	0.91	3.13	4.71
Signalized ThruCut	<u>E-W</u>	\nearrow	\square	\nearrow	\square	\nearrow		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		1135	<u>0.65</u>	0.65	3.88	4.66

Capacity Analysis for Planning of Junctions

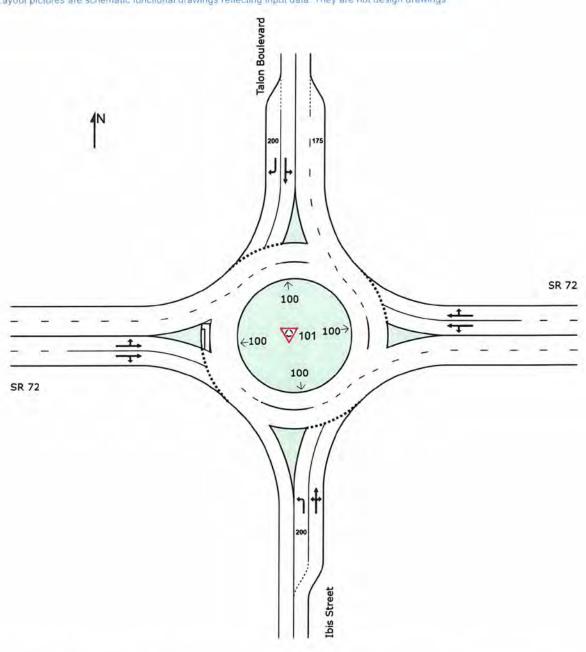
Detailed Report - Page 4 of 4

						Resul	ts for F	Rounda	abouts						
TYPE OF	Zo	one 1 (Nor	th)	Zo	one 3 (Eas	st)	Zo	ne 2 (Sou	th)	Zo	one 4 (Wes	st)	Overall v/c	Ped	Bicycle
ROUNDABOUT	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Ratio		Accomm odations
<u>1NS X 2EW</u>	<u>0.18</u>	\nearrow		<u>0.80</u>	<u>0.85</u>		<u>1.59</u>	\nearrow		<u>0.70</u>	<u>0.71</u>		1.59	4.89	4.62
<u>2 X 2</u>	<u>0.05</u>	<u>0.13</u>		<u>0.70</u>	<u>0.71</u>		<u>1.54</u>	<u>0.24</u>		<u>0.80</u>	<u>0.85</u>		1.54	4.60	4.54

				F	Resul	ts foi	^r Inte	rchar	nges							
TYPE OF INTERCHANGE	Sheet	Zone 1 <u>Mi</u> CLV	•	Zone 2 Mi CLV	(Lt rg) V/C	Zor (Cti CLV		Zor (Ctı CLV	-	Zone 5 Mi CLV	(Lt rg) V/C	Zone 6 Mr CLV	(Rt <u>'g)</u> V/C	Ratio	Ped Accomm odations	Bicycle Accomm odations

				•	nt of Transportation					
			Safe	ety Performance for Inters		ation Tool				
				Re	sults					
				Summary of crash predictio	n results for each alternat	tive				
				Project Ir	nformation					
roject Name:	SR 72 PD&E Study fro	om East of I-75 to Lorrai	ne Road	Intersection Type					At-Gra	de Intersection
tersection:	Talon Boulevard/Ibis	Street		Opening Year						2030
gency:	FDOT District One			Design Year						2050
oject Reference:	FPID No.: 444634-1-2	22-01		Facility Type				C)n Urban ai	nd Suburban Arterial
ity:	Sarasota County			Number of Legs						4-leg
ate:	Florida			1-Way/2-Way						tersecting 2-way
ate:	9/11/2023			# of Major Street Lanes (both	•					or fewer
nalyst:	AIM Engineering & S	urveying, Inc.		Major Street Approach Speed	1				Less	than 55 mph
			Crash Pre	diction Summary					S	SI Score
Control Strategy	Crash Type	Opening Year	Design Year	Total Project Life Cycle	Crash Prediction Rank	AADT Within SPF Prediction Range?	Source of Prediction	Opening Year	Design Year	Rank
Traffic Signal	Total	5.28	10.37	163.34	3	Yes	Calibrated SPF	97	<u>91</u>	6
	Fatal & Injury	1.80	3.64	56.60						
2-lane Roundabout	Total	7.81	14.66	234.92	2	No	Uncalibrated SPF	99	97	1
	Fatal & Injury	1.40	2.80	43.71						
Median U-Turn (MUT)	Total	4.49 1.26	8.81 2.55	138.84 39.62	1	N/A	CMF	<u>98</u>	<u>95</u>	3
	Fatal & Injury Total	10.33	2.55	358.78						
Signalized RCUT	Fatal & Injury	2.24	5.89	83.36	4	Yes	Uncalibrated SPF	<u>98</u>	<u>96</u>	2
	Total	No SPF	No SPF	No SPF				_		_
Signalized Thru-Cut	Fatal & Injury	No SPF	No SPF	No SPF		N/A	N/A	<u>97</u>	<u>92</u>	4
	Total	No SPF	No SPF	No SPF						
Bowtie	Fatal & Injury	No SPF	No SPF	No SPF		N/A	N/A	<u>97</u>	<u>92</u>	5

-- -- ---- -- Appendix E


Design Year SIDRA Analysis Summary Sheets

SITE LAYOUT

𝖁 Site: 101 [Talon Blvd/Ibis Street (Site Folder: General)]

Design Year (2050) Build Alternative 2 - AM Peak Hour Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AIM ENGINEERING AND SURVEYING | Licence: NETWORK / 1PC | Created: Monday, May 8, 2023 11:50:32 AM Project: T:\PROJECTS\2 - DISTRICT 1\D1_SR 72_PD&E\Traffic\Roundabout Analysis\Design Year\Updated Analyses\Talon_Ibis_2050_Build Alt 2_AM Pk Hr_Rev_3_27_2023.sip9

MOVEMENT SUMMARY

Site: 101 [Talon Blvd/Ibis Street (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Design Year (2050) Build Alternative 2 - AM Peak Hour Site Category: (None) Roundabout

Mov D	Turn	Mov Class		nand lows		rrival lows	Deg. Satn	Aver. Delav	Level of Service		Back Of Ieue	Prop Que	Eff. Stop	Aver No. of	Ave Speed
U		Ciass	[Total veh/h	HV]		HV]	v/c	sec	Service	[Veh. veh	Dist]	Que	Rate	Cycles	mpi
South	: Ibis S	Street													
3	L2	All MCs	891	2.0	891	2.0	0.920	47.1	LOS E	11.6	296.8	0.96	1.53	2.91	19.9
3	T1	All MCs	6	0.0	6	0.0	0.920	46.8	LOS E	11.6	296.8	0.96	1.54	2.94	20.4
18	R2	All MCs	111	9.0	111	9.0	0.920	48.8	LOS E	11.6	296.8	0.96	1.54	2.94	20.2
Appro	ach		1007	2.8	1007	2.8	0.920	47.3	LOSE	11.6	296.8	0.96	1.53	2.91	19.
East:	SR 72														
1	L2	All MCs	132	5.0	132	5.0	1.118	101.9	LOS F	29.2	759.1	1.00	2.57	6.20	13.
6	T1	All MCs	1047	5.0	1047	5.0	1.118	100.1	LOS F	31.6	821.4	1.00	2.64	6.40	14.
16	R2	All MCs	8	0.0	8	0.0	1.118	98.8	LOS F	31.6	821.4	1.00	2.70	6.54	14.
Appro	ach		1187	5.0	1187	5.0	1.118	100.3	LOS F	31.6	821.4	1.00	2.64	6.38	14.
North:	Talon	Boulevar	d												
7	L2	All MCs	11	0.0	11	0.0	0.080	18.9	LOS C	0.2	5.9	0.85	0.85	0.85	26.
1	T1	All MCs	6	0.0	6	0.0	0.080	18.9	LOS C	0.2	5.9	0.85	0.85	0.85	27.
14	R2	All MCs	41	3.0	41	3.0	0.193	21.8	LOS C	0.5	12.6	0.85	0.85	0.87	26.
Appro	ach		58	2.1	58	2.1	0.193	20.9	LOS C	0.5	12.6	0.85	0.85	0.87	26.
Nest:	SR 72	8													
5	L2	All MCs	35	0.0	35	0.0	0.695	12.1	LOS B	6.3	165.9	0.62	0.31	0.62	29.
2	T1	All MCs	857	8.0	857	8.0	0.695	12.9	LOS B	6.5	167.6	0.62	0.31	0.62	30.
2	R2	All MCs	734	4.0	734	4.0	0.695	12.5	LOS B	6.5	167.6	0.62	0.31	0.62	30.
Appro	ach		1625	6.0	1625	6.0	0.695	12.7	LOS B	6.5	167.6	0.62	0.31	0.62	30.

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AIM ENGINEERING AND SURVEYING | Licence: NETWORK / 1PC | Processed: Monday, March 27, 2023 1:53:45 PM Project: T:\PROJECTS\2 - DISTRICT 1\D1_SR 72_PD&E\Traffic\Roundabout Analysis\Design Year\Updated Analyses\Talon_Ibis_2050_Build Alt 2_AM Pk Hr_Rev_3_27_2023.sip9

LANE SUMMARY

Site: 101 [Talon Blvd/Ibis Street (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Design Year (2050) Build Alternative 2 - AM Peak Hour Site Category: (None) Roundabout

Lane Use	Demand	1000		Flows		Deg.	Lane	Aver.	Level of	95%	Back Of	Lane	Lane	Cap.	Prob.
	Deman	1 10 W	57111721	1 101/0	Cap.	Satn	Util.	Delay	Service		ieue	Config	Length	Adj. E	
	[Total veh/h	HV] %	[Total veh/h	HV] %	veh/h	v/c	%	sec		[Veh	Dist] ft		ft	%	%
South: Ibis	Street														
Lane 1	485	2.0	485	2.0	528	0.920	100	48.3	LOS E	11.4	289.6	Short	200	0.0	NA
Lane 2 ^d	522	3.5	522	3.5	567	0.920	100	46.3	LOS E	11.6	296.8	Full	1600	0.0	0.0
Approach	1007	2.8	1007	2.8		0.920		47.3	LOS E	11.6	296.8				
East: SR 7	2														
Lane 1	564	5.0	564	5.0	505	1.118	100	101.9	LOS F	29.2	759.1	Full	1600	0.0	0.0
Lane 2 ^d	623	4.9	623	4.9	558	1.118	100	98.8	LOS F	31.6	821.4	Full	1600	0.0	0.0
Approach	1187	5.0	1187	5.0		1.118		100.3	LOS F	31.6	821.4				
North: Talo	n Boule	vard													
Lane 1	17	0.0	17	0.0	211	0.080	100	18.9	LOS C	0.2	5.9	Full	1600	0.0	0.0
Lane 2 ^d	41	3.0	41	3.0	213	0.193	100	21.8	LOS C	0.5	12.6	Short	200	0.0	NA
Approach	58	2.1	58	2.1		0.193		20.9	LOS C	0.5	12.6				
West: SR	72														
Lane 1	799	7.7	799	7.7	1148	0.695	100	12.8	LOS B	6.3	165.9	Full	1600	0.0	0.0
ane 2 ^d	827	4.4	827	4.4	1189	0.695	100	12.5	LOS B	6.5	167.6	Full	1600	0.0	0.0
Approach	1625	6.0	1625	6.0		0.695		12.7	LOS B	6.5	167.6				
All Vehicles	3878	4.8	3878	4.8		1.118		48.6	LOS E	31.6	821.4				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

d Dominant lane on roundabout approach

Approach	Lane Flo	ws (ve	h/h)											
South: Ibis	uth: Ibis Street													
Mov. From S To Exit.	L2 W	T1 N	R2 E	Total	%HV	Cap. veh/h	Deg. Satn v/c		Prob. SL Ov. %	Ov. Lane No.				
Lane 1 Lane 2	485 405	6	- 111	485 522	2.0 3.5	528 567	0.920 0.920	100 100	17.3 NA	2 NA				

Approach	891	6	111	1007	2.8		0.920					
East: SR 72												
Mov. From E To Exit:	L2 S	T1 W	R2 N	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.		
Lane 1 Lane 2 Approach North: Talon	132 - 132 Bouleva	432 615 1047	- 8 8	564 623 1187	5.0 4.9 5.0	505 558	1.118 1.118 1.118	100 100	NA NA	NA NA		
Mov. From N To Exit:	L2 E	T1 S	R2 W	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.		
Lane 1 Lane 2 Approach	11 - 11	6 - 6	41 41	17 41 58	0.0 3.0 2.1	211 213	0.080 0.193 0.193	100 100	NA 0.0	NA 1		
West: SR 72 Mov. From W To Exit:	L2 N	T1 E	R2 S	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.		
Lane 1 Lane 2 Approach	35 - 35	764 93 857	- 734 734	799 827 1625	7.7 4.4 6.0	1148 1189	0.695 0.695 0.695	100 100	NA NA	NA NA		
-	Total	%HV C	Deg.Sat	n (v/c)	-						_	
All Vehicles	3878	4.8		1.118								

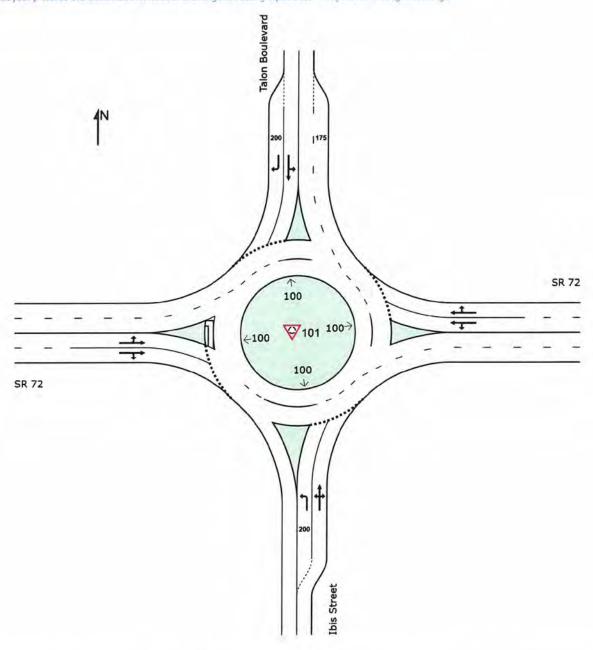
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Merge Analysis	1.2					ALC: NO	N. Carl		-			
	Exit Lane Number		Percent Opng in Lane	Flow	Rate	Critical Gap	Follow-up Headway	Flow Rate		Deg. Satn		Merge Delay
North Exit: Talon B Merge Type: Prior		ft	%	veh/h	pcu/h	sec	sec	veh/h	veh/h	v/c	sec	sec
Exit Short Lane	2	175	0.0	35	35	3.00	2.00	14	1766	0.008	2.0	2.1
Merge Lane	1	-	100.0	Me	erge La	ne is not C	pposed	35	1800	0.019	0.0	0.0

	Initial	Residual	Time for	Duration
	Queued	Queued	Residual Demand	of Oversatn
	Demand	Demand	to Clear	Oversau
	veh	veh	sec	sec
South: Ibis Str	eet			
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
East: SR 72				
Lane 1	0.0	14.8	105.8	NA
Lane 2	0.0	16.4	105.8	NA

North: Talon Boulevard

Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
West: SR 72				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0


SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AIM ENGINEERING AND SURVEYING | Licence: NETWORK / 1PC | Processed: Monday, March 27, 2023 1:53:45 PM Project: T:\PROJECTS\2 - DISTRICT 1\D1_SR 72_PD&E\Traffic\Roundabout Analysis\Design Year\Updated Analyses\Talon_Ibis_2050_Build Alt 2_AM Pk Hr_Rev_3_27_2023.sip9

SITE LAYOUT

V Site: 101 [Talon Blvd/Ibis Street (Site Folder: General)]

Design Year (2050) Build Alternative 2 - PM Peak Hour Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AIM ENGINEERING AND SURVEYING | Licence: NETWORK / 1PC | Created: Monday, May 8, 2023 11:56:11 AM Project: T:\PROJECTS\2 - DISTRICT 1\D1_SR 72_PD&E\Traffic\Roundabout Analysis\Design Year\Updated Analyses\Talon_Ibis_2050_Build Alt 2_PM Pk Hr_Rev_3_27_2023.sip9

MOVEMENT SUMMARY

Site: 101 [Talon Blvd/Ibis Street (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Design Year (2050) Build Alternative 2 - PM Peak Hour Site Category: (None) Roundabout

Mov	Turn	Mov	Dem			rrival	Deg.	Aver	Level of		Back Of	Prop.	Eff.	Aver.	Ave
D		Class	Fi [Total veh/h			lows HV] %	Satn v/c	Delay sec	Service	Qu [Veh veh	ieue Dist] ft	Que	Stop Rate	No. of Cycles	Spee mp
South	: Ibis S	Street	Veli/II	70	venin	70	V/C	560		Ven	-		_		mp
3	L2	All MCs	753	2.0	753	2.0	0.922	52.5	LOS F	9.9	251.6	0.96	1.46	2.75	19.
3	T1	All MCs	4	0.0	4	0.0	0.922	51.2	LOS F	9.9	251.6	0.95	1.47	2.77	19.
18	R2	All MCs	126	0.0	126	0.0	0.922	49.0	LOS E	9.9	251.6	0.95	1.47	2.77	19.
Appro	ach		883	1.7	883	1.7	0.922	52.0	LOS F	9.9	251.6	0.96	1.47	2.75	19.
East	SR 72														
1	L2	All MCs	116	0.0	116	0.0	0.752	24.4	LOS C	6.4	162.6	0.87	1.08	1.70	25.
5	T1	All MCs	824	2.0	824	2.0	0.752	23.9	LOS C	6.6	166.7	0.86	1.07	1.70	26
16	R2	All MCs	27	2.0	27	2.0	0.752	25.4	LOS D	6.6	166.7	0.86	1.07	1.70	26
Appro	ach		967	1.8	967	1.8	0.752	24.0	LOSC	6.6	166.7	0.87	1.07	1.70	26
North	Talon	Boulevar	d												
7	L2	All MCs	8	0.0	8	0.0	0.057	14.1	LOS B	0.2	4.4	0.80	0.80	0.80	28
1	T1	All MCs	7	0.0	7	0.0	0.057	14.1	LOS B	0.2	4.4	0.80	0.80	0.80	28.
14	R2	All MCs	46	0.0	46	0.0	0.141	13.4	LOS B	0.4	11.1	0.79	0.79	0.79	29.
Appro	ach		62	0.0	62	0.0	0.141	13.6	LOS B	0.4	11.1	0.80	0.80	0.80	29.
Nest:	SR 72														
5	L2	All MCs	52	0.0	52	0.0	0.814	16.7	LOS C	15.8	402.0	0.84	0.50	0.99	28.
2	T1	All MCs	1064	2.0	1064	2.0	0.814	16.9	LOS C	15.9	403.0	0.84	0.50	0.99	28.
12	R2	All MCs	891	2.0	891	2.0	0.814	16.9	LOS C	15.9	403.0	0.84	0.50	0.99	28.
Appro	ach		2006	1.9	2006	1.9	0.814	16.9	LOS C	15.9	403.0	0.84	0.50	0.99	28.

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AIM ENGINEERING AND SURVEYING | Licence: NETWORK / 1PC | Processed: Monday, March 27, 2023 2:02:43 PM Project: T:\PROJECTS\2 - DISTRICT 1\D1_SR 72_PD&E\Traffic\Roundabout Analysis\Design Year\Updated Analyses\Talon_Ibis_2050_Build Alt 2_PM Pk Hr_Rev_3_27_2023.sip9

LANE SUMMARY

Site: 101 [Talon Blvd/Ibis Street (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Design Year (2050) Build Alternative 2 - PM Peak Hour Site Category: (None) Roundabout

-	Demand	Flow	s Arrival	Flows	Cap.	Deg. Satn	Lane Util	Aver. Delay	Level of Service		Back Of eue	Lane Config	Lane Length	Cap. I Adi. I	Prob. Block
	[Total veh/h	HV] %	[Total veh/h	HV] %	veh/h	v/c	%	sec	Cornoo	[Veh	Dist] ft	conng	ft	%	%
South: Ibis	Street														
Lane 1	411	2.0	411	2.0	446	0.922	100	54.4	LOS F	9.3	235.4	Short	200	0.0	NA
Lane 2 ^d	472	1.4	472	1.4	512	0.922	100	49.8	LOS E	9.9	251.6	Full	1600	0.0	0.0
Approach	883	1.7	883	1.7		0.922		52.0	LOS F	9.9	251.6				
East: SR 7	2														
Lane 1	462	1.5	462	1.5	614	0.752	100	24.9	LOS C	6.4	162.6	Full	1600	0.0	0.0
Lane 2 ^d	506	2.0	506	2.0	672	0.752	100	23.3	LOS C	6.6	166.7	Full	1600	0.0	0.0
Approach	967	1.8	967	1.8		0.752		24.0	LOS C	6.6	166.7				
North: Tale	n Boule	vard													
Lane 1	16	0.0	16	0.0	276	0.057	100	14.1	LOS B	0.2	4.4	Full	1600	0.0	0.0
Lane 2 ^d	46	0.0	46	0.0	328	0.141	100	13.4	LOS B	0.4	11.1	Short	200	0.0	NA
Approach	62	0.0	62	0.0		0.141		13.6	LOS B	0.4	11.1				
West: SR	72														
Lane 1 ^d	1004	1.9	1004	1.9	1233	0.814	100	16.9	LOS C	15.8	402.0	Full	1600	0.0	0.0
Lane 2	1003	2.0	1003	2.0	1232	0.814	100	16.9	LOS C	15.9	403.0	Full	1600	0.0	0.0
Approach	2006	1.9	2006	1.9		0.814		16.9	LOS C	15.9	403.0				
All Vehicles	3919	1.8	3919	1.8		0.922		26.5	LOS D	15.9	403.0				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

d Dominant lane on roundabout approach

Approach	Lane Flo	ws (ve	en/n)	_					_						
South: Ibis S	buth: Ibis Street														
Mov. From S To Exit:	L2 W	T1 N	R2 E	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util %	Prob. SL Ov. %	Ov. Lane No.					
Lane 1	411	-	-	411	2.0	446	0.922	100	10.0	2					
Lane 2	341	4	126	472	1.4	512	0.922	100	NA	NA					

Approach	753	4	126	883	1.7		0.922				
East: SR 72											
Mov. From E To Exit:	L2 S	T1 W	R2 N	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.	
Lane 1	116	346	-	462	1.5	614	0.752	100	NA	NA	
Lane 2		478	27	506	2.0	672	0.752	100	NA	NA	
Approach	116	824	27	967	1.8		0.752				
North: Talon	Bouleva	rd									
Mov. From N	L2	T1	R2	Total	%HV	Cap.	Deg. Satn		Prob. SL Ov.	Ov. Lane	
To Exit:	E	S	W			veh/h	v/c	%	%	No.	
Lane 1	8	7	-	16	0.0	276	0.057	100	NA	NA	
Lane 2	-		46	46	0.0	328	0.141	100	0.0	1	
Approach	8	7	46	62	0.0		0.141				
West: SR 72											
Mov. From W	L2	T1	R2	Total	%HV	Cap.	Deg. Satn		Prob. SL Ov.	Ov. Lane	
To Exit:	N	E	S			veh/h	v/c	%	%	No.	 and the
Lane 1	52	952	-	1004	1.9	1233	0.814	100	NA	NA	
Lane 2	-	112	891	1003	2.0	1232	0.814	100	NA	NA	
Approach	52	1064	891	2006	1.9		0.814				
	Total	%HV D	0eg.Sat	n (v/c)				-			
All Vehicles	3919	1.8		0.922							

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Merge Analysis	1000	100		12			-	-	1.			
	Exit Lane Number		Percent Opng in Lane			Critical Gap	Follow-up Headway			Deg. Satn	Min. Delay	Merge Delay
		ft	%	veh/h	pcu/h	sec	sec	veh/h	veh/h	v/c	sec	sec
North Exit: Talon B Merge Type: Prior												
Exit Short Lane	2	175	0.0	52	52	3.05	2.03	32	1718	0.018	2.1	2.2
Merge Lane	1	-	100.0	M	erge La	ne is not C	pposed	52	1800	0.029	0.0	0.0

	Initial Queued	Residual Queued	Time for Residual	Duration of
	Demand	Demand	Demand to Clear	Oversatn
	veh	veh	sec	sec
South: Ibis Str	eet			
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
East: SR 72				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0

Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
West: SR 72				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AIM ENGINEERING AND SURVEYING | Licence: NETWORK / 1PC | Processed: Monday, March 27, 2023 2:02:43 PM Project: T:\PROJECTS\2 - DISTRICT 1\D1_SR 72_PD&E\Traffic\Roundabout Analysis\Design Year\Updated Analyses\Talon_Ibis_2050_Build Alt 2_PM Pk Hr_Rev_3_27_2023.sip9

MOVEMENT SUMMARY

Site: 101 [Talon Blvd/Ibis Street (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Interim Year (2048) Build Alternative 2 - AM Peak Hour Site Category: (None) Roundabout

Mov	Turn	Mov		hand		rival	Deg	Aver.	Level of		Back Of	Prop.	Eff.	Aver. No. of	Aver
D		Class			F [Total veh/h	lows HV] %	Satn v/c	Delay sec	Service	(Veh veh	ieue Dist] ft	Que	Stop Rate	Cycles	Speed mpt
South	: Ibis S	Street	venin		ven/m	70	vic	560	_	ven	10		-	_	mpt
3	L2	All MCs	837	2.0	837	2.0	0.845	35.4	LOS E	8.3	213.9	0.91	1.30	2.25	22.
3	T1	All MCs	6	0.0	6	0.0	0.845	35.4	LOS E	8.3	213.9	0.91	1.30	2.26	22.
18	R2	All MCs	103	9.0	103	9.0	0.845	37.1	LOS E	8.3	213.9	0.91	1.30	2.26	22.
Appro	ach		946	2.7	946	2.7	0.845	35.6	LOS E	8.3	213.9	0.91	1.30	2.25	22.
East:	SR 72														
1	L2	All MCs	124	5.0	124	5.0	1.018	69.9	LOS F	19.2	499.7	1.00	2.00	4.24	17.
5	T1	All MCs	1011	5.0	1011	5.0	1.018	68.1	LOS F	20.5	531.9	1.00	2.03	4.33	17.
6	R2	All MCs	8	0.0	8	0.0	1.018	67.0	LOS F	20.5	531.9	1.00	2.06	4.39	17.
Appro	ach		1143	5.0	1143	5.0	1.018	68.3	LOS F	20.5	531.9	1.00	2.03	4.32	17.
North	Talon	Boulevar	d												
7	L2	All MCs	11	0.0	11	0.0	0.080	19.0	LOS C	0.2	6.0	0.86	0.86	0.86	26.
1	T1	All MCs	6	0.0	6	0.0	0.080	19.0	LOS C	0.2	6.0	0.86	0.86	0.86	27.
14	R2	All MCs	41	3.0	41	3.0	0.194	22.0	LOS C	0.5	12.7	0.85	0.86	0.88	26.
Appro	ach		58	2.1	58	2.1	0.194	21.1	LOS C	0.5	12.7	0.85	0.86	0.87	26.
Nest:	SR 72	2													
5	L2	All MCs	34	0.0	34	0.0	0.672	11.4	LOS B	5.7	151.2	0.60	0.30	0.60	30.
2	T1	All MCs	836	8.0	836	8.0	0.672	12.2	LOS B	5.9	152.7	0.60	0.30	0.60	30.
2	R2	All MCs	694	4.0	694	4.0	0.672	11.9	LOS B	5.9	152.7	0.60	0.30	0.60	30.
ppro	ach		1563	6.1	1563	6.1	0.672	12.1	LOS B	5.9	152.7	0.60	0.30	0.60	30.

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AIM ENGINEERING AND SURVEYING | Licence: NETWORK / 1PC | Processed: Monday, March 27, 2023 3:39:41 PM Project: T:\PROJECTS\2 - DISTRICT 1\D1_SR 72_PD&E\Traffic\Roundabout Analysis\Design Year\Updated Analyses\Talon_Ibis_2048_Build Alt

2 AM Pk Hr Rev 3 27 2023.sip9

LANE SUMMARY

Site: 101 [Talon Blvd/Ibis Street (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Interim Year (2048) Build Alternative 2 - AM Peak Hour Site Category: (None) Roundabout

Lane Use							1		-			-			
	Demano				Cap.	Deg. Satn	Lane Util	Aver. Delay	Level of Service	QL	Back Of leue	Lane Config	Lane Length		Prob. Block.
	[Total veh/h	HV] %	[Total veh/h	HV] %	veh/h	v/c	%	sec		[Veh	Dist] ft		ft	%	%
South: Ibis	Street														
Lane 1	456	2.0	456	2.0	540	0.845	100	36.5	LOS E	8.3	210.7	Short	200	0.0	NA
Lane 2 ^d	490	3.4	490	3.4	580	0.845	100	34.7	LOS D	8.3	213.9	Full	1600	0.0	0.0
Approach	946	2.7	946	2.7		0.845		35.6	LOS E	8.3	213.9				
East: SR 7	2														
Lane 1	544	5.0	544	5.0	534	1.018	100	69.9	LOS F	19.2	499.7	Full	1600	0.0	0.0
Lane 2 ^d	599	4.9	599	4.9	589	1.018	100	66.9	LOS F	20.5	531.9	Full	1600	0.0	0.0
Approach	1143	5.0	1143	5.0		1.018		68.3	LOS F	20.5	531.9				
North: Talo	n Boule	vard													
Lane 1	17	0.0	17	0.0	210	0.080	100	19.0	LOS C	0.2	6.0	Full	1600	0.0	0.0
Lane 2 ^d	41	3.0	41	3.0	211	0.194	100	22.0	LOS C	0.5	12.7	Short	200	0.0	NA
Approach	58	2.1	58	2.1		0.194		21.1	LOS C	0.5	12.7				
West: SR	72														
Lane 1	768	7.6	768	7.6	1143	0.672	100	12.2	LOS B	5.7	151.2	Full	1600	0.0	0.0
Lane 2 ^d	795	4.5	795	4.5	1183	0.672	100	11.9	LOS B	5.9	152.7	Full	1600	0.0	0.0
Approach	1563	6.1	1563	6.1		0.672		12.1	LOS B	5.9	152.7				
All Vehicles	3711	4.8	3711	4.8		1.018		35.5	LOS E	20.5	531.9				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

d Dominant lane on roundabout approach

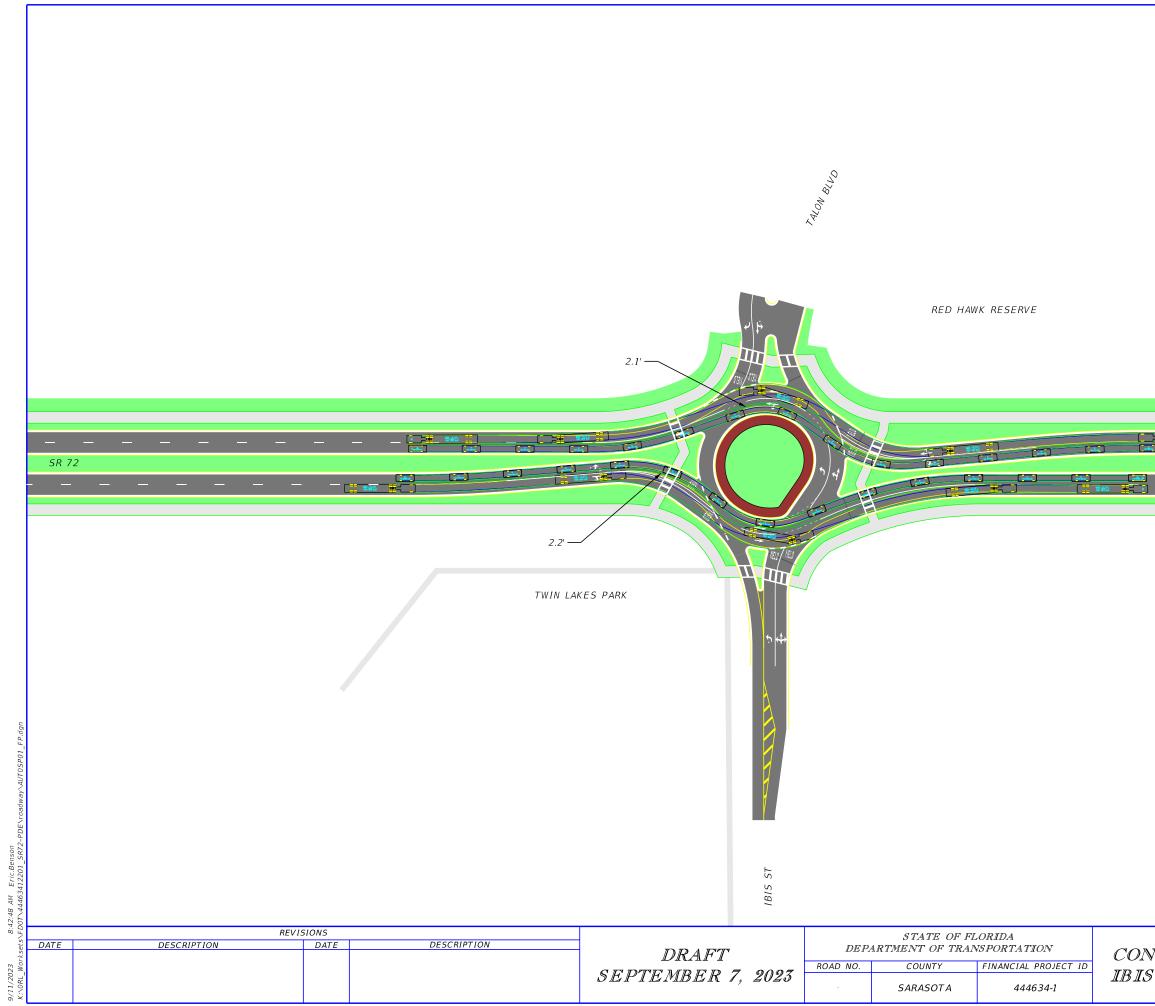
Approach	Lane Flo	ws (ve	eh/h)								
South: Ibis	Street										
Mov. From S To Exit.	L2 W	T1 N	R2 E	Total	%HV	Cap veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov %	Ov. Lane No	
Lane 1 Lane 2	456 381	6	103	456 490	2.0 3.4	540 580	0.845 0.845	100 100	6.6 NA	2 NA	

Approach	837	6	103	946	2.7		0.845				
East: SR 72										_	
Mov. From E To Exit:	L2 S	T1 W	R2 N	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	SL Ov.	Ov. Lane No.	
Lane 1	124	420		544	5.0	534	1.018	100	NA	NA	
Lane 2	-	591	8	599	4.9	589	1.018	100	NA	NA	
Approach	124	1011	8	1143	5.0		1.018				
North: Talon I	Bouleva	rd									
Mov. From N	L2	T1	R2	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.	
To Exit:	E	S	W							2000	
Lane 1	11	6	-	17	0.0	210	0.080	100	NA	NA	
Lane 2	-	-	41	41	3.0	211	0.194	100	0.0	1	
Approach	11	6	41	58	2.1		0.194				
West: SR 72											
Mov. From W To Exit:	L2 N	T1 E	R2 S	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.	
Lane 1	34	735	-	768	7.6	1143	0.672	100	NA	NA	
Lane 2	-	101	694	795	4.5	1183	0.672	100	NA	NA	
Approach	34	836	694	1563	6.1		0.672				
	Total	%HV [Deg.Sat	n (v/c)							and the second se
All Vehicles	3711	4.8		1.018	-						

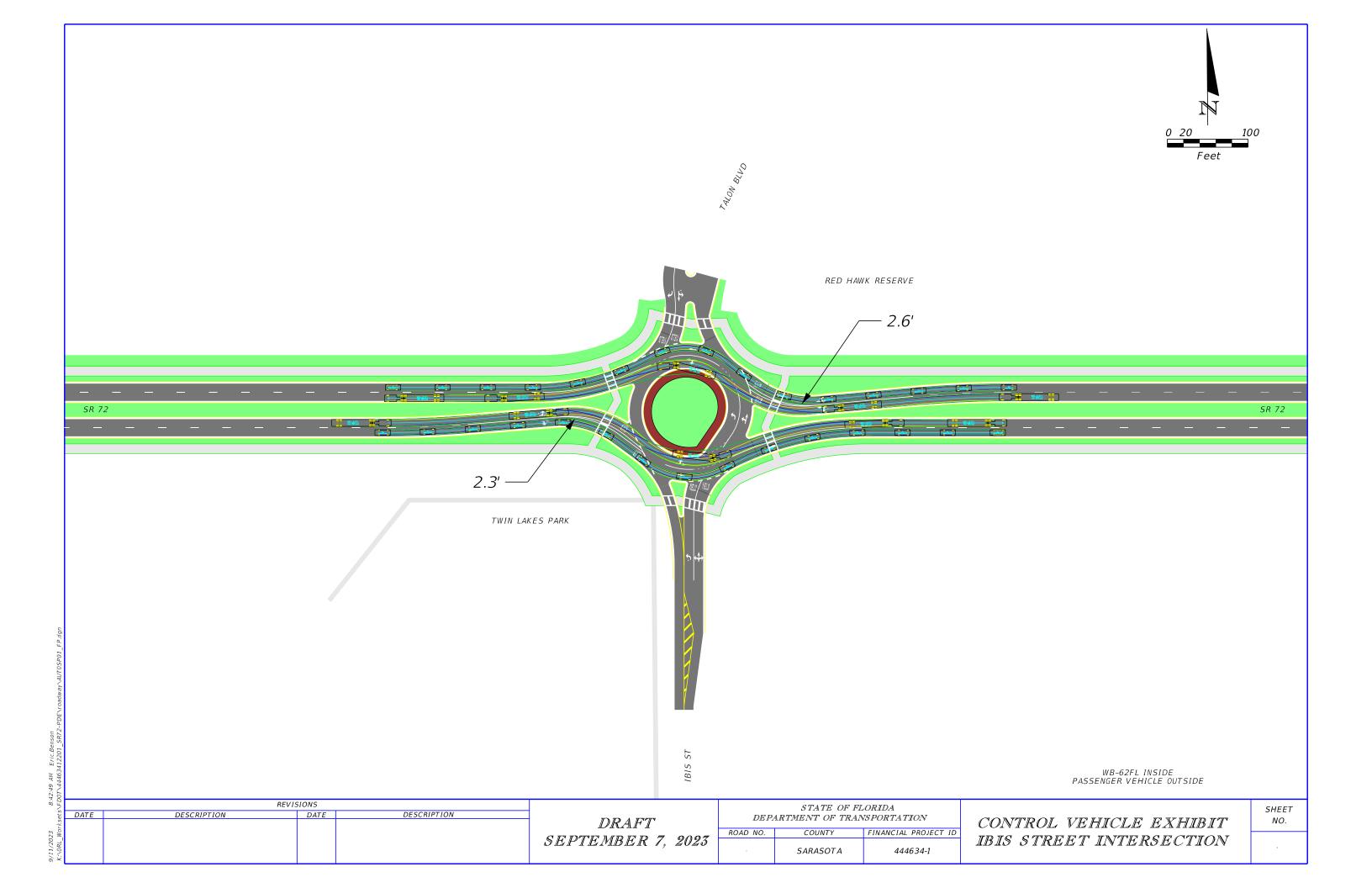
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Merge Analysis			10.00			and the second		-AL				
	Exit Lane Number		Percent Opng in Lane	100 million and and		Critical Gap	Follow-up Headway			Deg. Satn	Min. Delay	Merge Delay
		ft	%	veh/h	pcu/h	sec	sec	veh/h	veh/h	v/c	sec	sec
North Exit: Talon B Merge Type: Prior												
Exit Short Lane	2	175	0.0	34	34	3.00	2.00	15	1767	0.008	2.0	2.1
Merge Lane	1	-	100.0	M	erge La	ne is not C	pposed	34	1800	0.019	0.0	0.0

	Initial Queued Demand	Residual Queued Demand	Time for Residual Demand to Clear	Duration of Oversatn
	veh	veh	sec	sec
South: Ibis Stre	eet			
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
East: SR 72				
Lane 1	0.0	2.5	16.6	NA
Lane 2	0.0	2.7	16.6	NA


Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
West. SR 72				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AIM ENGINEERING AND SURVEYING | Licence: NETWORK / 1PC | Processed: Monday, March 27, 2023 3:39:41 PM Project: T:\PROJECTS\2 - DISTRICT 1\D1_SR 72_PD&E\Traffic\Roundabout Analysis\Design Year\Updated Analyses\Talon_Ibis_2048_Build Alt 2_AM Pk Hr_Rev_3_27_2023.sip9 Appendix F


Preliminary Roundabout Concept and Performance Checks

1/2023 10:13:24 AM Eric.Benson ORL Worksets\FDOT\44463412201 SR72-PDE\roadwav\AUTOSPO

0 20 1 Feet	00 1
	— — SR 72
PASSENGER VEHICLE INSIDE WB-62FL OUTSIDE	SHEET
TROL VEHICLE EXHIBIT STREET INTERSECTION	NO.

		0 100 Feet
	RED HAWK RESERVE	
		 SR 72
- 2-DE-Voadway-AUT05P01_FP.dgn	TWIN LAKES PARK	
8:42:50 AM Eric.Benson .FD0T\44463412201_SR72.	SU-30 DESIGN VEHICLE RIGHT-TURNS	
	DATE DESCRIPTION DATE DESCRIPTION DATE DESCRIPTION DATE DESCRIPTION DATE DESCRIPTION DEPARTMENT OF TRANSPORTATION CONTROL VEHICLE EXH	

		SB Radius (ft) R1 278 R2 68 R3 * R4 60 R5 102	MPH 30 16 30 16 21 ¹⁰ 21	278° R 102 P	219' R	WB R1 R2 R3 R4 R5 RED HAWK	Radius (ft) MP 234 28 94 18 * 3. 60 16 148 24	3 3 1 5
	 SR 72 		1	294' R 273	134 P	234 R 247'R		-
10:47:15 AM Eric.Benson FDDT\44463412201_SR72-PDE\roadway\AUT0SP01_FP.dgn		EB Radiu R1 20 R2 6 R3 2 R4 6	WIN LAKES PARK 266 30 68 16 * 30 67 16 43 23	T2		NB R1 R2 R3 R4 R5	Radius (ft) MPH 273 30 93 18 * 31 53 15 134 23	
9/11/2023 10:47:15 AM Er K:\ORL_Worksets\FDOT\4463412	DATE DESCRIPTION	IONS DATE DESCRIPTION	DI SEPTEM	siai RAFT	DEPARTMEN ROAD NO. C	TATE OF FLOR NT OF TRANSF OUNTY FI RASOTA	PIDA PORTATION NANCIAL PROJECT ID 444634-1	FAS IBIS

0 20 10 Feet	20
	— — SR 72
	CULCT
ASTEST PATH EXHIBIT S STREET INTERSECTION	SHEET NO. 1A