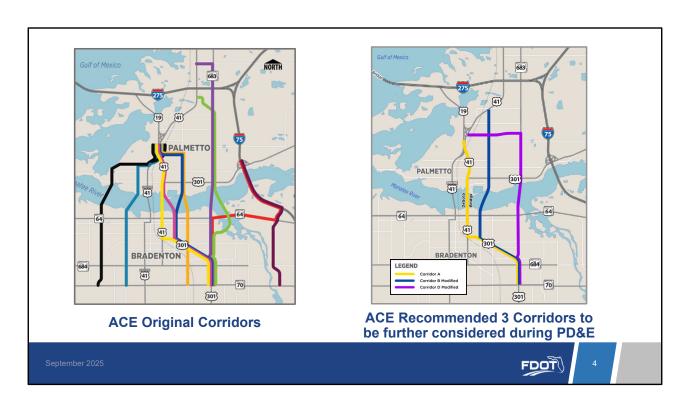


Thank you for your interest in the Florida Department of Transportation's Bradenton-Palmetto Connector Project Development and Environment (PD&E) Study (Financial Project ID No. 444843-1).


This presentation provides the most up-to-date information available at this stage of the study. Please note that the study is still in progress and has not yet been completed.

Jimmy P. Vilcé, P.E., CPM Project Development Manager FDOT Project Manager FDOT District One Jimmy New (863) 519-2293 Michelle Rutishauser FDOT Project Manager GFT Given Manager (813) 380-7121 Gail Woods, P.E. Consultant Project Manager GFT Given Manager (407) 875-8923 Jimran Ghani, P.E., AICP Traffic Studies Consultant Oairis 9 Consulting

The Bradenton-Palmetto Connector PD&E Study team is led by Jimmy P. Vilcé, P.E., CPM, FDOT Project Development Manager. The project is managed by Michelle Rutishauser, an FDOT in-house GEC consultant, Gail Woods, P.E., serves as the Consultant Project Manager. Imran Ghani, P.E., AICP, serves as the Traffic Studies Consultant.

This presentation provides an overview of the Bradenton-Palmetto Connector Alternative Corridor Evaluation Report (ACER) and the Project Development and Environment (PD&E) Study. It summarizes the results of traffic studies conducted by the project team and presents conceptual drawings of potential alternatives along Corridor A. The presentation also highlights key findings to date and outlines the next steps in the process.

On the left, you can see the original 10 corridors from the Alternative Corridor Evaluation (ACE) Study. At the conclusion of that study, we recommended advancing three corridors for further evaluation in the next phase, the PD&E Study: Corridor A in yellow, Corridor B (modified) in blue, and Corridor D (modified) in purple.

Project Status

May 29, 2025 - ACER approved by FDOT Central Office

PD&E Update

- Traffic Studies are Complete
 - 2045 Model developed and approved
 - Origin Destination Study complete
 - 20 improvement alternatives for Corridor A (US 301/US 41), B, and D have been analyzed and compared
- Developing Conceptual Improvement Plans, Impacts Evaluation & Preliminary Costs for Corridor A (US 301/US 41)
 - Widening to 6 Lanes throughout
 - Widening to 8 Lanes throughout
 - Widening to 6 Lanes and Elevating 2 Lanes in the Median
- Current focus is on maximizing the benefit of improvements on existing roadways
- Examining road conditions, safety concerns, land use, environmental factors, cost, and community feedback
- Planning a Public Workshop for early 2026

FDOT Central Office approved the Final Alternative Corridor Evaluation Report on May 29, 2025. Since then, the traffic studies have been completed for the three recommended corridors, including the development and approval of the 2045 traffic model and the completion of the Origin–Destination Study.

So far, we've analyzed and compared 20 potential improvement alternatives across Corridors A, B, and D. For Corridor A, which follows US 301 and US 41, we are now developing conceptual improvement plans, evaluating potential impacts, and preparing preliminary cost estimates. The three primary options under review include: widening to six lanes throughout, widening to eight lanes throughout, or widening to six lanes with two elevated lanes in the median.

Our current focus is on maximizing the benefits of improvements to the existing roadways. This includes evaluating roadway conditions, addressing safety concerns, reviewing land use and environmental factors, analyzing costs, and considering community feedback.

We are planning a public workshop in early 2026, where we will present the findings to date and gather additional input.

Traffic Analysis

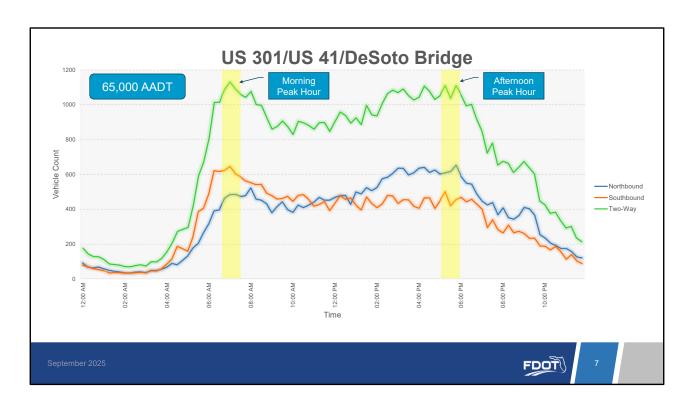
Origin - Destination Study Purpose

- Understand existing travel patterns
- · Identify current traffic origins and destinations
- · Define local and regional traffic
- · Help calibrate the Regional Planning Model

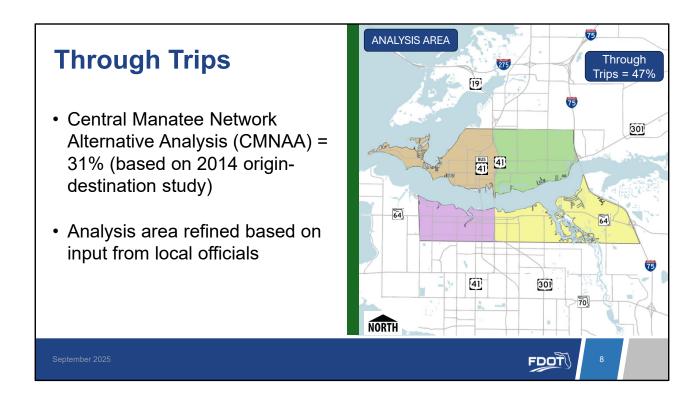
Travel Demand Forecasting

· Forecasted 2045 traffic on all roadways within the study area

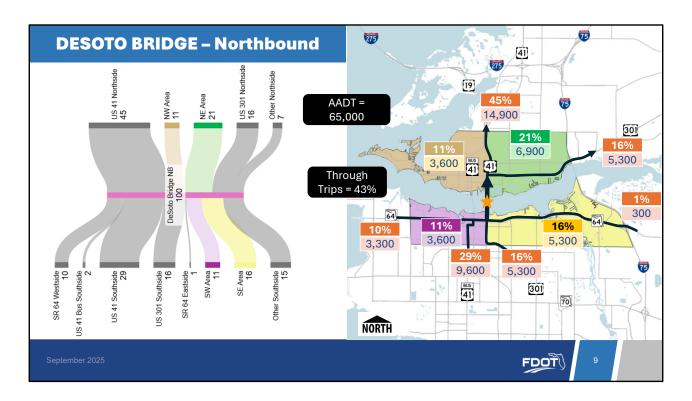
Alternative Analysis

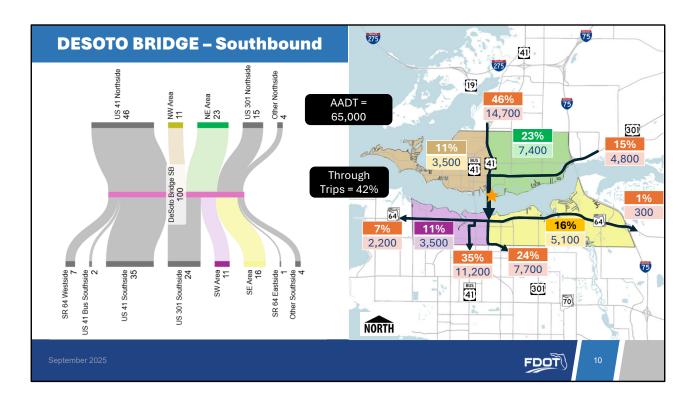

• Developed and analyzed 20 different improvement scenarios on multiple corridors

September 2025



ŧ


The foundation of every Project Development & Environment or PD&E study is having a thorough understanding of existing travel patterns. For this reason, our traffic analysis included collecting traffic counts and conducting an origin-destination survey. This information was used to determine improvement scenarios on multiple corridors to forecast traffic to 2045.

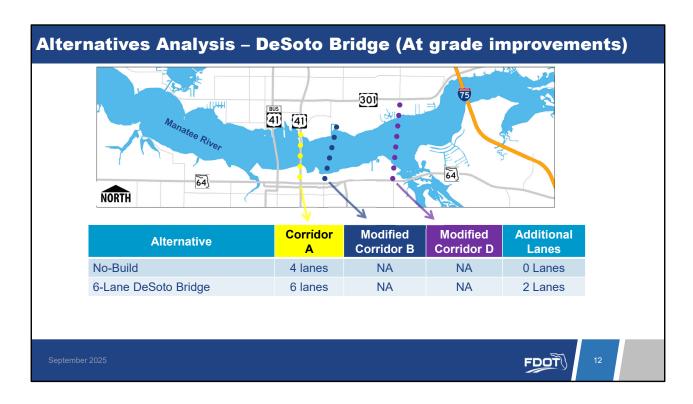

Our data collection uses the latest traffic data. A traffic count on the DeSoto Bridge was conducted three months ago, in May 2025. Traffic counts show that during the morning rush hour, the peak direction is southbound. However, during the afternoon rush hour, the peak direction is northbound. Although this graphic is specific to the DeSoto Bridge, this pattern is true for all three bridges, the Green Bridge, the DeSoto Bridge, and the I-75 Bridge.

In 2014, an origin-destination survey for the Central Manatee Network Alternative Analysis identified that 31% of the trips are through trips. Through trips are trips that start and end outside the study area. For this study, we worked with the cities of Bradenton and Palmetto and used local input to define an analysis area. Second, we updated the data based on the latest origin-destination information, and it shows that the percentage of through trips has increased to 47%.

This slide shows the results of the origin-destination analysis for northbound traffic on the DeSoto Bridge. We will focus on two key questions: how traffic gets to the bridge, and where it goes after crossing the Manatee River? As you can see, a large percentage of the traffic uses US 41 / US 301 to reach the bridge. Once across the DeSoto Bridge, 45% of the traffic continues north along US 41B on Corridor A, traveling to either US 19 or US 41 and moving outside the analysis area.

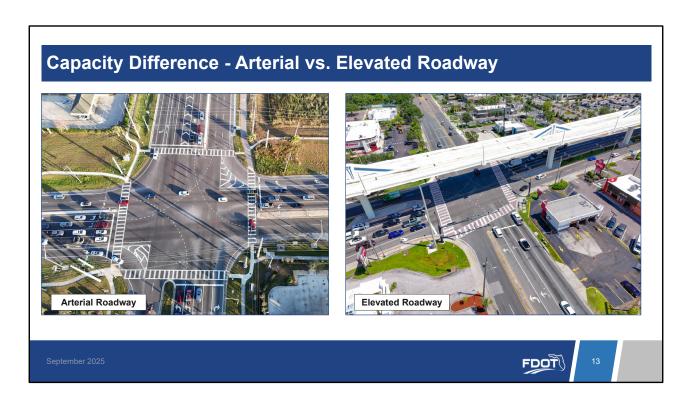
Next, we will switch to southbound traffic on DeSoto Bridge. Again, 46% of the traffic is originating from US 19 and US 41. After crossing the Manatee River, 35% of the traffic continues on US 41B Business while 24% uses US 301.

Planning Assumptions


- 2020 Manatee County Population = 399,710 (Source: 2020 U.S. Census)
- 2045 Manatee County Projection = 592,200 (Source: University of Florida Bureau of Economic and Business Research, Bulletin 198, January 2024)
- DeSoto Bridge DEMAND > Capacity

September 2025

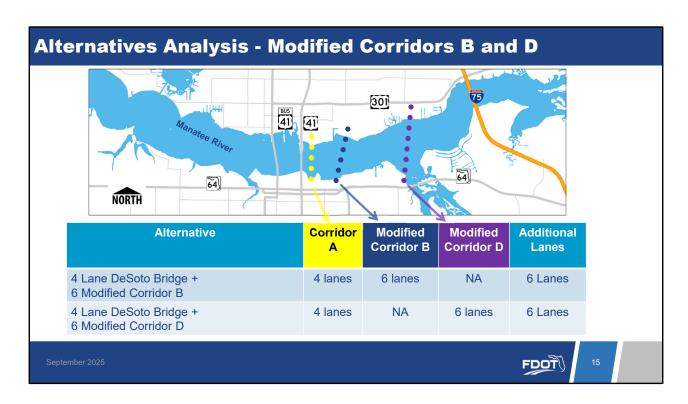
One of the needs for this project is based on population growth. By 2045, Manatee County's population is projected to increase by almost 200,000 people. Our traffic analysis shows that there is considerably more demand than capacity on the bridges across Manatee River.


As a result, our alternatives focused on increasing capacity by adding more lanes.

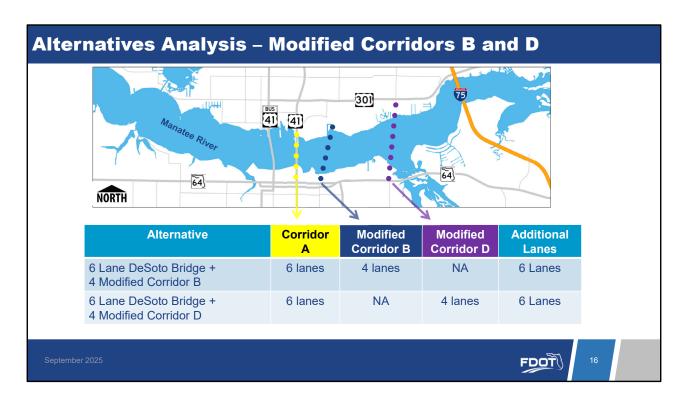
For our alternatives analysis, we evaluated adding lanes at three locations: Corridor A, shown in yellow, Corridor B shown in blue and Corridor D shown in purple.

We started by analyzing the No-Build or Do-Nothing alternative. In this scenario, no improvements are proposed and therefore, no additional lanes are proposed.

We also looked at widening Corridor A to 6 lanes which will provide two additional lanes compared to the No-Build Alternative.



Corridor A, US 301/ US 41, is currently classified as an arterial road. One of the biggest challenges with adding lanes to arterials is that the additional capacity is quickly reduced by signalized intersections. Today, there are ten signalized intersections from SR 70 to the DeSoto Bridge and four signalized intersections north of the DeSoto Bridge to the US 19 split.

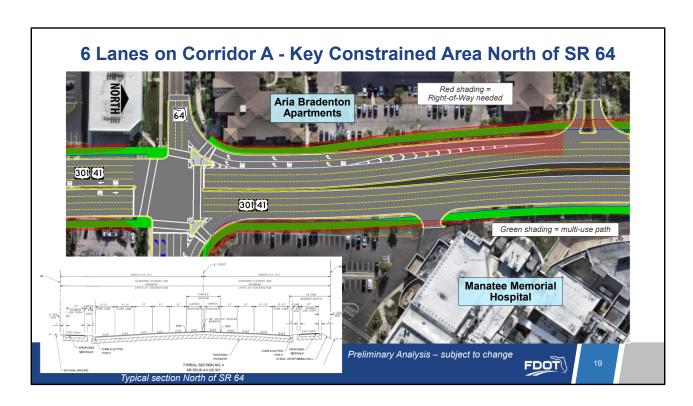

To address this issue, we explored innovative solutions from across the state. The image on the right shows an example from Gandy Boulevard in Tampa, where they faced a similar challenge. There, the solution was to build an elevated roadway that bypassed all major intersections.

For the next set of alternatives, we looked at widening the US 41 corridor to six lanes and adding an elevated roadway supported by columns in the median. The 6+2 option adds four lanes of additional capacity, while the 6+4 option adds six lanes of additional capacity. We tested both a two-lane and a four-lane elevated option. All of these improvements were evaluated along Corridor A.

So far, all of our improvements have focused on Corridor A. In the next set of alternatives, US 41 remains a four-lane roadway, while a new six-lane facility is evaluated along Corridor B or along Corridor D. Compared to the No-Build alternative, each of these options would add six additional lanes of capacity across the Manatee River.

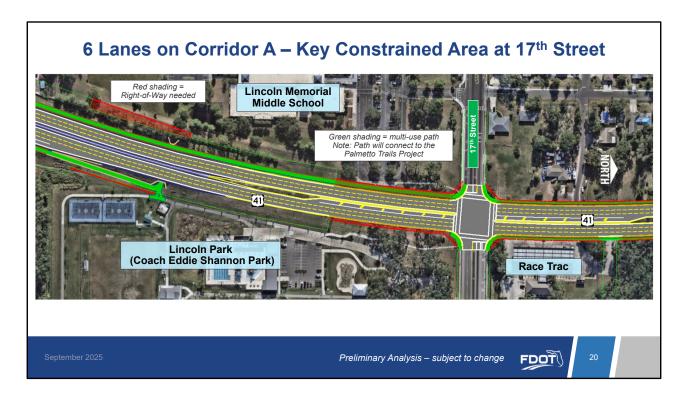
The final set of alternatives combined improvements at two corridors. Rather than simply make improvements at one corridor, we also modeled alternatives that added two lanes to Corridor A and providing a four-lane facility at either Corridor B or Corridor D. Each of these scenarios adds six additional lanes of capacity across the Manatee River.

	2045 Pr	ojection	Volume/ Ca	pacity Ratio	Vehicle Hours Traveled (hours) Savings	
Alternative	(DeSoto Bridge)	(Other Bridge)	(DeSoto Bridge)	(Other Bridge)		
No-Build Alternative	83,000	NA	2.26	NA	Baseline	
Corridor A 6 Lanes At-grade	94,000	NA	1.74	NA	1,690	
Corridor A 6 Lanes At-grade + 2 Lanes Elevated (8 total lanes)	73,000	53,000 (Elevated)	1.32	1.28 (Elevated)	6,674	—
Corridor A 6 Lanes At-grade + 4 Lanes Elevated (10 total lanes)	70,000	63,000 (Elevated)	1.26	0.77 (Elevated)	1,595	
Corridor A No-Build + Corridor B 6 Lanes (10 total lanes)	44,000	92,000	1.17	1.66 (Corridor B)	4,761	
Corridor A No-Build + Corridor D 6 Lanes (10 total lanes)	52,000	94,000	1.39	1.71 (Corridor D)	7,635	—
Corridor A 6 Lanes + Corridor B 4 Lanes (10 total lanes)	59,000	74,000	1.08	1.97 (Corridor B)	2,355	
Corridor A 6 Lanes + Corridor D 4 Lanes (10 total lanes)	64,000	79,000	1.17	2.11 (Corridor D)	6,546	

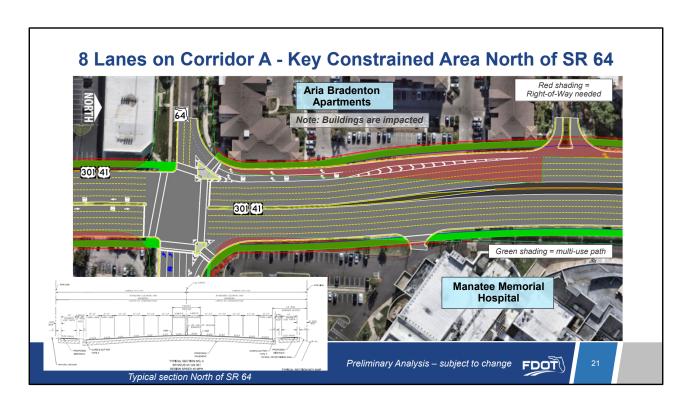

With all the alternatives defined, the next step was to forecast traffic demand to year 2045. We reviewed several metrics, including 2045 forecast at the bridge and volume/capacity ratio. While all these measures help evaluate individual roadways, we also wanted to understand which alternatives deliver the greatest benefit to study area.

To do this, we looked at "Vehicle Hours Traveled." This metric measures the overall congestion across the study area rather than focusing on a single roadway. This metric, combined with the 2045 traffic projections and volume/capacity ratio, the three top performing corridors are:

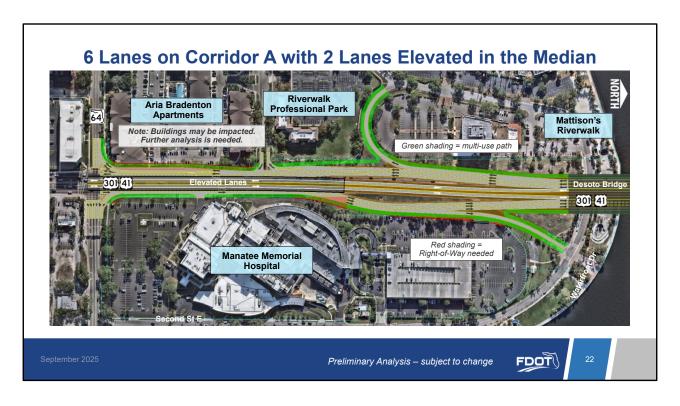
- 6-Lanes DeSoto Bridge & 2 Elevated Lanes
- 4-Lanes DeSoto Bridge & 6 Lanes Modified Corridor D
- 6-Lanes DeSoto Bridge & 4 Lanes Modified Corridor D

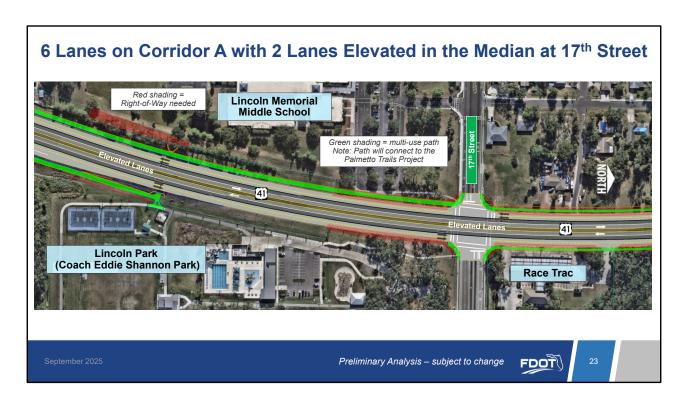


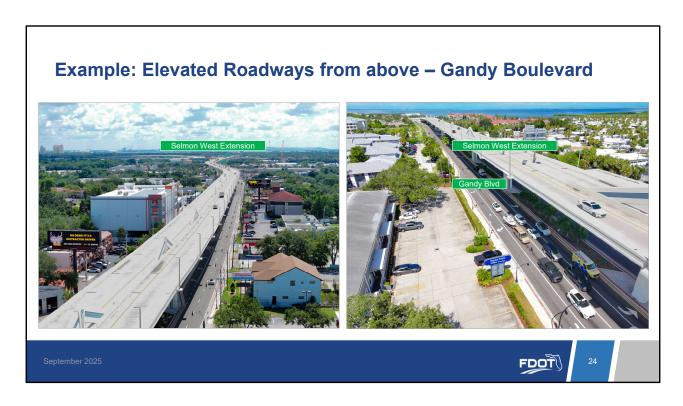
We will start with our review of the conceptual analysis of Corridor A, which is US 301/US 41. The project begins at SR 70/53rd Avenue East and ends at the US 19/US 41 split, a distance of 8.75 miles.



There are several pinch points along the corridor, including the area between the Manatee Memorial Hospital and the Aria Bradenton Apartments, north of SR 64.


This slide shows the six-lane typical section in the left corner, along with the six-lane concept on an aerial, with the green shading for the multi-use path, and the red-shaded area showing additional right-of-way that may need to be acquired. This analysis is preliminary and subject to change based on refinements through the PD&E Study.


Another pinch point is at 17th Street in Palmetto, where Lincoln Memorial Middle School and Coach Eddie Shannon Park are located south of the intersection, and a RaceTrac is in the northeast quadrant. Right-of-way acquisition may be needed in all four corners of the intersection. There are no impacts to Lincoln Memorial Middle School's parking and road system; there is a slight right-of-way clip to their sidewalk. There are impacts to the Race Trac property. This analysis is preliminary and subject to change as refinements are made during the PD&E Study.


This slide shows the same location on the south side of the DeSoto Bridge, with an eight-lane typical section—four through lanes in each direction. The layout has been shifted to the west from the six-lane concept to minimize impacts to the hospital. The green shading indicates the multi-use path, and the red-shaded area shows additional right-of-way that may be needed. This analysis is preliminary and subject to change based on refinements through the PD&E Study.

Our team also evaluated a two-lane elevated section combined with six surface lanes — three in each direction—for a total of eight lanes. This option would impact both the Aria Bradenton Apartments and Manatee Memorial Hospital, with the green shading for the multi-use path, and the red-shaded area showing additional right-of-way that may need to be acquired. This analysis is preliminary and subject to change based on refinements through the PD&E Study.

The other location of the pinch point is at 17th Street in Palmetto, where you have Lincoln Memorial Middle School and Coach Eddie Shannon Park south of the intersection and Race Trac in the northeast quadrant. The six-lane at-grade and two-lane elevated concepts will require only slightly more right-of-way. There will be right-of-way acquisition in all four corners of the intersection. This analysis is preliminary and subject to change based on refinements through the PD&E Study.

This slide provides examples of what the elevated roadway could look like from above, using aerial views of the Selmon West Extension over Gandy Boulevard in Tampa as a reference.

This slide shows ground-level photos of what the elevated lanes would look like from underneath. As you can see, the elevated option allows enough sunlight for landscaping to grow in the median.

	Currently based on ACER level of evaluation									
	2045 Traffic Demand		Volume/Capacity Ratio		Vehicle Hours	Environmental	R/W Impacts	R/W + Mitigation		
	(DeSoto Bridge)	(Other Bridge)	(DeSoto Bridge)	(Other Bridge)	Traveled (hours)	Impacts	TOW Impacts	Costs (M)	Costs	
Corridor A 6 Lanes At-grade	94,000	NA	1.74	NA	1,690	Low	Low	Low	Low	
Corridor A 6 Lanes At-grade + 2 Lanes Elevated (8 total lanes)	73,000	53,000 (Elevated)	1.32	1.28 (Elevated)	6,674	Medium	Low	Low	High	
Corridor A 6 Lanes At-grade + 4 Lanes Elevated (10 total lanes)	70,000	63,000 (Elevated)	1.26	0.77	1,595	Medium	Medium	Medium	Very High	
Corridor A No-Build + Corridor B 6 Lanes (10 total lanes)	44,000	92,000 (Corridor B)	1.17	1.66 (Corridor B)	4,761	High	High	High	Medium	
Corridor A No-Build + Corridor D 6 Lanes (10 total lanes)	52,000	94,000 (Corridor D)	1.39	1.71 (Corridor D)	7,635	High	Very High	Very High	Medium	
Corridor A 6 Lanes + Corridor B 4 Lanes (10 total lanes)	59,000	74,000 (Corridor B)	1.08	1.97 (Corridor B)	2,355	High	High	Very High	High	
Corridor A 6 Lanes + Corridor D 4 Lanes (10 total lanes)	64,000	79,000 (Corridor D)	1.17	2.11 (Corridor D)	6,546	High	Very High	Very High	High	
						All info	rmation is prelir	minary and subject	to change	

This comparison matrix highlights the tradeoffs between each corridor option. Corridor A with six lanes at-grade offers only modest travel time savings, while adding elevated lanes improves performance but comes with higher costs and impacts. Corridors B and D provide the greatest travel time savings, but also bring much higher environmental, right-of-way, and mitigation impacts. In short, while elevated and new corridor options reduce congestion most effectively, they also carry more costs and community impacts. Corridor A at-grade remains the lowest impact option, but with less congestion relief.

Conclusions and Approach Moving Forward

- All alternatives have competing impacts community, environmental, cost, etc.
- Widening Corridor A (US 301/US 41) beyond 6 lanes provides diminishing returns. 8-lane and 10-lane concepts were analyzed, but only perform slightly better than 6 lanes -- with much greater impacts to properties and businesses. The intersections are bottlenecks affecting capacity and performance.
- Elevated options on Corridor A (US 301/US 41) appear to function well, including moving regional traffic and splitting it from local traffic but are very expensive, and more evaluation is needed.
- Corridors B and D (on new alignments) perform well from a traffic standpoint, but also have significant community impacts and expressed concerns.
- Alternatives require further conceptual design and footprint definition, GIS-level analysis of impacts, and planning-level cost estimates.
- Current focus is on maximizing the benefit of improvements on existing roadways Corridor A (US 301/US 41).

September 2025

2

In summary, there is no single alternative that moves traffic effectively without impacts to the environment, right of way or high costs. Each option involves tradeoffs across community, environmental, and cost considerations. For Corridor A, widening beyond six lanes provides only a limited benefit while creating greater property and business impacts, with intersections remaining the key bottlenecks.

Elevated options could help separate local and regional traffic, but are very costly and require further study. Corridors B and D perform well from a traffic perspective but face strong community opposition.

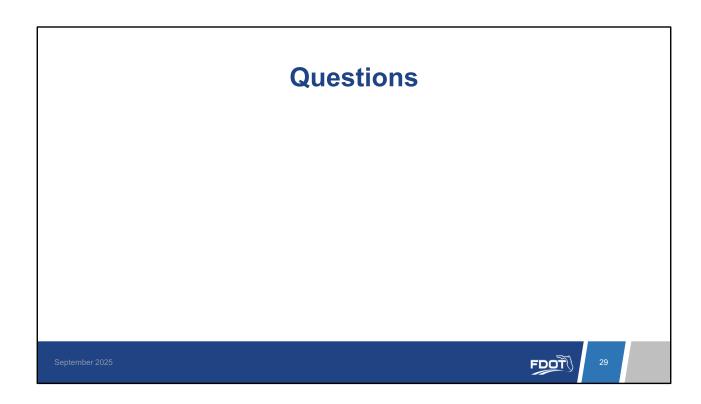
Moving forward, our focus is on maximizing improvements along the existing roadway, Corridor A, while continuing to refine concepts, evaluate impacts, and develop planning-level costs. We are seeking input from our local agency partners on the analysis presented here today.

Continued Community Engagement

Currently Scheduled Meetings

- Bradenton City Council (August 27), Palmetto Commissioners (September 8), Sarasota/Manatee Metropolitan Planning Organization (September), Manatee County Commissioners (October),
- · Small Group Meetings, as requested
- · Update website with new information
- Receive and respond to comments

Future Meetings


- Public Workshop Early 2026
- Public Hearing Fall/Winter 2026


September 2025

2

Community engagement is a vital part of this project. We have scheduled meetings with local officials and will continue to meet with small groups upon request. Project updates will be posted to the website as new information becomes available. Comments are welcome, and responses will be provided to comments received. A Public Workshop is anticipated in early 2026, followed by a Public Hearing in Fall/Winter 2026.

Please contact the Florida Department of Transportation District One with any questions or comments. Contacts are listed on the slide.